
The Great Depression
Thorbiörn Fritzon

The Great Computing
Depression

Thorbiörn Fritzon
Sr. Systems Engineer

Diminishing Returns

10000

1000

100

10

1

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

P
e
rf

o
rm

a
n
c
e
 (

v
s
.
V

A
X

-1
1
/7

8
0
)

25%/year

52%/year

< 20%/year

Diminishing Returns

10000

1000

100

10

1

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

P
e
rf

o
rm

a
n
c
e
 (

v
s
.
V

A
X

-1
1
/7

8
0
)

25%/year

52%/year

< 20%/year

< 20%/year

Conventional Wisdoms: 1

old wisdom:

Power is free, but transistors are
expensive

new wisdom:

“Power Wall”: Power is expensive, but
transistors are “free”. That is, we can
put more transistors on a chip than we
have the power to turn on.

Conventional Wisdoms: 3

old wisdom:

Monolithic uniprocessors in silicon are
reliable internally, with errors
occuring only at the pins.

new wisdom:

As chips drop below 65 nm feature
sizes, they will have high soft and
hard error rates. [Borkar 2005]
[Mukherjee et al 2005]

Conventional Wisdoms: 7

old wisdom:

Multiply is slow but load and store is
fast

new wisdom:

“Memory Wall”: Load and store is slow,
but multiply is fast. Modern
microprocessors can take 200 clock
cycles to access RAM, but even floating
point multiplications can be done in
four clock cycles on a modern FPU.
[Wulf and McKee 1995]

Conventional Wisdoms: 8

old wisdom:

We can reveal more instruction-level
parallelism (ILP) via compilers and
architecture innovation. Examples from
the past include branch prediction,
out-of-order execution, speculation,
and Very Long Instruction Word systems.

new wisdom:

“ILP Wall”: There are diminishing
returns on finding more ILP. [Hennessy
and Patterson 2007]

Conventional Wisdoms: 9

old wisdom:

Uniprocessor performance doubles every
18 months. (Moore’s Law?)

new wisdom:

Power Wall + Memory Wall + ILP Wall =
Brick Wall. In 2006, performance is a
factor of three below the traditional
doubling every 18 months that we
enjoyed between 1986 and 2002. The
doubling of uniprocessor performance
may now take 5 years.

Moore’s Law

Number of transistors doubling every 18 months.

Number of transistors doubling every 24 months.

10,000,000,00010,000,000,000

100,000100,000

1,000,0001,000,000

10,000,00010,000,000

100,000,000100,000,000

1,000,000,0001,000,000,000

2,3002,300

10,00010,000

N
um

be
r o

f t
ra

ns
ist

or
s o

n
N

um
be

r o
f t

ra
ns

ist
or

s o
n

an
 in

te
gr

at
ed

 c
irc

ui
t

an
 in

te
gr

at
ed

 c
irc

ui
t

YearYear

19711971 19801980 19901990 20002000 20042004

40044004 80088008

80868086

286286

386386

486486

PentiumPentium

Pentium IIPentium II

Pentium IIIPentium III

Pentium 4Pentium 4

ItaniumItanium

Itanium 2Itanium 2

Itanium 2Itanium 2
(9 MB cache)(9 MB cache)

80808080

High-Performance Multi-
Core Processors

▪
 AMD
▪
 Athlon 64, Athlon 64 FX and Athlon 64 X2 family, dual-core desktop processors.
▪
 Opteron, dual- and quad-core server/workstation processors.
▪
 Phenom, triple- and quad-core desktop processors.
▪
 Sempron X2, dual-core entry level processors.
▪
 Turion 64 X2, dual-core laptop processors.
▪
 Radeon and FireStream multi-core GPU/GPGPU (10 cores, 16 5-issue wide superscalar stream processors

per core)
▪
 Azul Systems Vega 2, a 48-core processor.
▪
 Cavium Networks Octeon, a 16-core MIPS MPU.
▪
 HP PA-8800 and PA-8900, dual core PA-RISC processors.
▪
 IBM

▪
 POWER4, the world's first dual-core processor, released in 2001.
▪
 POWER5, a dual-core processor, released in 2004.
▪
 POWER6, a dual-core processor, released in 2007.
▪
 PowerPC 970MP, a dual-core processor, used in the Apple Power Mac G5.
▪
 Xenon, a triple-core, SMT-capable, PowerPC microprocessor used in the Microsoft Xbox 360 game console.

▪
 IBM, Sony, and Toshiba Cell processor, a nine-core processor with one general purpose PowerPC core and eight
specialized SPUs (Synergystic Processing Unit) optimized for vector operations used in the Sony PlayStation 3.

▪
 Intel
▪
 Celeron Dual Core, the first dual-core processor for the budget/entry-level market.
▪
 Core Duo, a dual-core processor.
▪
 Core 2 Duo, a dual-core processor.
▪
 Core 2 Quad, a quad-core processor.
▪
 Core i7, a quad-core processor, the successor of the Core 2 Duo and the Core 2 Quad.
▪
 Itanium 2, a dual-core processor.
▪
 Pentium D, a dual-core processor.
▪
 Teraflops Research Chip (Polaris), an 3.16 GHz, 80-core processor prototype, which the company says will be

released within the next five years[6].
▪
 Xeon dual-, quad- and hexa-core processors.

▪
 IntellaSys seaForth24, a 24-core processor.
▪
 Nvidia

▪
 GeForce 9 multi-core GPU (8 cores, 16 scalar stream processors per core)
▪
 GeForce 200 multi-core GPU (10 cores, 24 scalar stream processors per core)
▪
 Tesla multi-core GPGPU (8 cores, 16 scalar stream processors per core)

▪
 Sun Microsystems
▪
 UltraSPARC IV and UltraSPARC IV+, dual-core processors.
▪
 UltraSPARC T1, an eight-core, 32-thread processor.
▪
 UltraSPARC T2, an eight-core, 64-concurrent-thread processor.

▪
 Tilera TILE64, a 64-core processor

Wikipedia:

http://en.wikipedia.org/wiki/Advanced_Micro_Devices
http://en.wikipedia.org/wiki/Advanced_Micro_Devices
http://en.wikipedia.org/wiki/Athlon_64
http://en.wikipedia.org/wiki/Athlon_64
http://en.wikipedia.org/wiki/Athlon_64_FX
http://en.wikipedia.org/wiki/Athlon_64_FX
http://en.wikipedia.org/wiki/Athlon_64_X2
http://en.wikipedia.org/wiki/Athlon_64_X2
http://en.wikipedia.org/wiki/Opteron
http://en.wikipedia.org/wiki/Opteron
http://en.wikipedia.org/wiki/Phenom_(processor)
http://en.wikipedia.org/wiki/Phenom_(processor)
http://en.wikipedia.org/w/index.php?title=Sempron_X2&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Sempron_X2&action=edit&redlink=1
http://en.wikipedia.org/wiki/Turion_64_X2
http://en.wikipedia.org/wiki/Turion_64_X2
http://en.wikipedia.org/wiki/Radeon
http://en.wikipedia.org/wiki/Radeon
http://en.wikipedia.org/wiki/AMD_FireStream
http://en.wikipedia.org/wiki/AMD_FireStream
http://en.wikipedia.org/wiki/Graphics_processing_unit
http://en.wikipedia.org/wiki/Graphics_processing_unit
http://en.wikipedia.org/wiki/GPGPU
http://en.wikipedia.org/wiki/GPGPU
http://en.wikipedia.org/wiki/Superscalar
http://en.wikipedia.org/wiki/Superscalar
http://en.wikipedia.org/wiki/Stream_processing
http://en.wikipedia.org/wiki/Stream_processing
http://en.wikipedia.org/wiki/Azul_Systems
http://en.wikipedia.org/wiki/Azul_Systems
http://en.wikipedia.org/wiki/Cavium_Networks
http://en.wikipedia.org/wiki/Cavium_Networks
http://en.wikipedia.org/wiki/MIPS_architecture
http://en.wikipedia.org/wiki/MIPS_architecture
http://en.wikipedia.org/wiki/Manycore_processing_unit
http://en.wikipedia.org/wiki/Manycore_processing_unit
http://en.wikipedia.org/wiki/PA-RISC
http://en.wikipedia.org/wiki/PA-RISC
http://en.wikipedia.org/wiki/IBM
http://en.wikipedia.org/wiki/IBM
http://en.wikipedia.org/wiki/POWER4
http://en.wikipedia.org/wiki/POWER4
http://en.wikipedia.org/wiki/POWER5
http://en.wikipedia.org/wiki/POWER5
http://en.wikipedia.org/wiki/POWER6
http://en.wikipedia.org/wiki/POWER6
http://en.wikipedia.org/wiki/PowerPC_970
http://en.wikipedia.org/wiki/PowerPC_970
http://en.wikipedia.org/wiki/Power_Mac_G5
http://en.wikipedia.org/wiki/Power_Mac_G5
http://en.wikipedia.org/wiki/Xenon_(processor)
http://en.wikipedia.org/wiki/Xenon_(processor)
http://en.wikipedia.org/wiki/Simultaneous_multithreading
http://en.wikipedia.org/wiki/Simultaneous_multithreading
http://en.wikipedia.org/wiki/PowerPC
http://en.wikipedia.org/wiki/PowerPC
http://en.wikipedia.org/wiki/Microsoft
http://en.wikipedia.org/wiki/Microsoft
http://en.wikipedia.org/wiki/Xbox_360
http://en.wikipedia.org/wiki/Xbox_360
http://en.wikipedia.org/wiki/IBM
http://en.wikipedia.org/wiki/IBM
http://en.wikipedia.org/wiki/Sony
http://en.wikipedia.org/wiki/Sony
http://en.wikipedia.org/wiki/Toshiba
http://en.wikipedia.org/wiki/Toshiba
http://en.wikipedia.org/wiki/Cell_(microprocessor)
http://en.wikipedia.org/wiki/Cell_(microprocessor)
http://en.wikipedia.org/wiki/Sony
http://en.wikipedia.org/wiki/Sony
http://en.wikipedia.org/wiki/PlayStation_3
http://en.wikipedia.org/wiki/PlayStation_3
http://en.wikipedia.org/wiki/Intel
http://en.wikipedia.org/wiki/Intel
http://en.wikipedia.org/w/index.php?title=Celeron_Dual_Core&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Celeron_Dual_Core&action=edit&redlink=1
http://en.wikipedia.org/wiki/Core_Duo
http://en.wikipedia.org/wiki/Core_Duo
http://en.wikipedia.org/wiki/Core_2_Duo
http://en.wikipedia.org/wiki/Core_2_Duo
http://en.wikipedia.org/wiki/Core_2_Quad
http://en.wikipedia.org/wiki/Core_2_Quad
http://en.wikipedia.org/wiki/Core_i7
http://en.wikipedia.org/wiki/Core_i7
http://en.wikipedia.org/wiki/Core_2_Duo
http://en.wikipedia.org/wiki/Core_2_Duo
http://en.wikipedia.org/wiki/Core_2_Quad
http://en.wikipedia.org/wiki/Core_2_Quad
http://en.wikipedia.org/wiki/Itanium_2
http://en.wikipedia.org/wiki/Itanium_2
http://en.wikipedia.org/wiki/Pentium_D
http://en.wikipedia.org/wiki/Pentium_D
http://en.wikipedia.org/wiki/Teraflops_Research_Chip
http://en.wikipedia.org/wiki/Teraflops_Research_Chip
http://en.wikipedia.org/wiki/Multi-core#cite_note-5
http://en.wikipedia.org/wiki/Multi-core#cite_note-5
http://en.wikipedia.org/wiki/Xeon
http://en.wikipedia.org/wiki/Xeon
http://en.wikipedia.org/wiki/Nvidia
http://en.wikipedia.org/wiki/Nvidia
http://en.wikipedia.org/wiki/GeForce_9_Series
http://en.wikipedia.org/wiki/GeForce_9_Series
http://en.wikipedia.org/wiki/Graphics_processing_unit
http://en.wikipedia.org/wiki/Graphics_processing_unit
http://en.wikipedia.org/wiki/Scalar_processor
http://en.wikipedia.org/wiki/Scalar_processor
http://en.wikipedia.org/wiki/Stream_processing
http://en.wikipedia.org/wiki/Stream_processing
http://en.wikipedia.org/wiki/GeForce_200_Series
http://en.wikipedia.org/wiki/GeForce_200_Series
http://en.wikipedia.org/wiki/Graphics_processing_unit
http://en.wikipedia.org/wiki/Graphics_processing_unit
http://en.wikipedia.org/wiki/Scalar_processor
http://en.wikipedia.org/wiki/Scalar_processor
http://en.wikipedia.org/wiki/Stream_processing
http://en.wikipedia.org/wiki/Stream_processing
http://en.wikipedia.org/wiki/Nvidia_Tesla
http://en.wikipedia.org/wiki/Nvidia_Tesla
http://en.wikipedia.org/wiki/GPGPU
http://en.wikipedia.org/wiki/GPGPU
http://en.wikipedia.org/wiki/Scalar_processor
http://en.wikipedia.org/wiki/Scalar_processor
http://en.wikipedia.org/wiki/Stream_processing
http://en.wikipedia.org/wiki/Stream_processing
http://en.wikipedia.org/wiki/Sun_Microsystems
http://en.wikipedia.org/wiki/Sun_Microsystems
http://en.wikipedia.org/wiki/UltraSPARC_T1
http://en.wikipedia.org/wiki/UltraSPARC_T1
http://en.wikipedia.org/wiki/UltraSPARC_T2
http://en.wikipedia.org/wiki/UltraSPARC_T2
http://en.wikipedia.org/wiki/Tilera
http://en.wikipedia.org/wiki/Tilera
http://en.wikipedia.org/wiki/TILE64
http://en.wikipedia.org/wiki/TILE64

High-Performance Single-
Core Processors

Erik Hagersten:

Vector CPU

❖ Early 60’s: Solomon Project

❖ Cray-1 (2, X-MP, Y-MP)

❖ SIMD

~ Single Instruction, Multiple Data

❖ MIMD

~ Multiple Instruction, Multiple Data

❖ AltiVec: Velocity Engine, VMX

❖ Cell

❖ GPU: GPGPU

Multi-Core and CMT

C M C M C M C M
C M C M C M C M

C M C M C M C M
C M C M C M C M

Core 2

Core 1

C

M

Compute Cycles

Memory Wait Cycles

Parallel
Thread Execution

C M C M C M C M
C M C M C M C M

C M C M C M C M
C M C M C M C M

Many-Core

0.12!3

)*+,-./

>"$%&'%("

!"#"$%&'%("

0.12!3

)*+,-./

>"$%&'%("

!"#"$%&'%("

4'"5%6'"!2,7)/2"!3

)*+,-./

4'"5%6'"!2,7

1.?<

*)2=!2C/

;<.9=!>)2

)/2"!8

)*+,-./

>"$%&'%("

!"#"$%&'%("

>"$%&'%("

!"#"$%&'%("

96:!8

96:!3

!!?!/@AB$@''"$!8 !!?!/@AB$@''"$!3

!!?!/@AB$@''"$!D !!?!/@AB$@''"$!C

?
Homogenous or Heterogenous?

“In six years (2014), we will have 1000 cores”
 –Prof. Anant Agarwal, MIT & Tilera

Programming in a
Dark Future

The Problem

❖ Write a program for 1 CPU, scale it linear
to n CPUs

❖ But, we don’t understand:

~ What hardware support is needed

~ What language to use

~ How to get it efficient

~ How to get it right

~ What education is needed

❖ We live in interesting times

Concurrency and
Parallelism Models

❖ Explicit

~ Threads, Processes, Co-Routines

~ Actors

~ Futures

❖ Hinting

~ Quasi-Static Scheduling

❖ Implicit

~ Stream-Based Programming

~ Pure Functional Programming

❖ Data Parallelism

~ Arrays

~ Generators

~ Map/Reduce

interface ArchiveSearcher { String search(String target); }
 class App {
 ExecutorService executor = ...
 ArchiveSearcher searcher = ...
 void showSearch(final String target)
 throws InterruptedException {
 Future<String> future=

executor.submit(new Callable<String>() {
 public String call() {
 return searcher.search(target);
 }});
 displayOtherThings(); // do other things while searching
 try {
 displayText(future.get()); // use future
 } catch (ExecutionException ex) { cleanup(); return; }
 }
 }

Futures

Futures

IO Programming Language:

// async, immediately returns a Future

futureResult := obj @foo

// Do something else while we wait

print futureResult

Map/Reduce

Haskell: (n2)!

n!:

factorial 0 = 1

factorial n = n * factorial (n - 1)

or:

factorial n = foldr (*) 1 [1..n]

map a function to a list:

map (\n -> n*n) [1..n]

hence, (n2)!:

foldr (*) 1 (map (\n -> n*n) [1..n])

Pure Functional

foo(bar(x), fie(y), fum(z))

Thread 1

bar(x)

Thread 2

fie(y)

Thread 3

fum(z)

Sorting Networks

3 2 4 1

1 2 3 4

Calculating Networks

1 2 3 4 5

1 2 6 24 120

* *

* *

*

Calculating Networks

1

1

144

233

* * * * * * * * * * *

2

3

5

8

13

21

34

55

89

144

233

“

”
–Guy Steele

The bag of programming
tricks that has served
us so well for the
last 50 years is the
wrong way to think
going forward and must
be thrown out.

Why?

❖ Good sequential code minimizes total number
of operations.

~ Clever tricks to reuse previously computed
results.

~ Good parallel code often performs
redundant operations to reduce
communication.

Why?

❖ Good sequential algorithms minimize space
usage.

~ Clever tricks to reuse storage.Clever

~ Good parallel code often requires extra
space to permit temporal decoupling.

Why?

❖ Sequential idioms stress linear problem
decomposition.

~ Process one thing at a time and accumulate
results.

~ Good parallel code usually requires
multiway problem decomposition and
multiway aggregation of results.

Let’s Add a Bunch
of Numbers

SUM = 0 // OOPS!

DO I = 1, 1000000
SUM = SUM + X(I)

END DO

What Does a
Mathematician Say?

1000000∑

x=1

xi

∑
xor maybe just

Compare FORTRAN 90: SUM(X).

What, not how?
No commitment to strategy. This is good.

Let’s Add a Bunch
of Numbers

SUM = 0

DO I = 1, 1000000

SUM = SUM + X(I)

END DO

0

+

+

+

+

X(1)

X(2)

X(999999)
X(1000000)

Atomic Update
Computation Tree

SUM = 0

PARALLEL DO I = 1, 1000000

ATOMIC SUM = SUM + X(I)

END DO

0

+

+

+

+

X(1)

X(2)

X(999999)
X(1000000)

Parallel Computation
Tree

❖ What sort of code should we write to get a
computation tree of this shape?

❖ What sort of code would we like to write?

0

+ +

+

+

X(1) X(2) X(999999) X(1000000)X(2)

+ +

...

Finding the Length of a
LISP List, recursive

23 47 19 11

first rest
car cdr

(define length (list)
(cond ((null list) 0)
(else (+ 1 (length (rest list))))))

Finding the Length of a
LISP List, iterative

23 47 19 11

first rest
car cdr

(define length (list)
(do ((x list (rest x))

(n 0 (+ n 1)))
((null x) n)))

class List<T> {
abstract int length();

}

class Empty extends List {
int length() { return 0; }

}

class Node<T> extends List<T> {
T first;
List<T> rest;
int length() { return 1 + rest.length(); }

}

Length of an Object-
Oriented List

Linear versus Multiway
Decomposition

❖ These are important program decomposition
strategies, but inherently sequential.

~ Mostly because of the linearly organized
data structure.

~ Compare Peano arithmetic:
 5 = ((((0+1)+1)+1)+1)+1

~ Binary arithmetic is much more efficient
than unary!

❖ We need a multiway decomposition paradigm:

~ length [] = 0

~ length [a] = 1

~ length (a++b) = (length a) + (length b)

❖ This is just a summation problem: adding up
a bunch of 1’s!

Splitting a String into
Words (1)

❖ Given: a string

❖ Result: List of strings, the words separated
by spaces

~ Words must be nonempty

~ Words may be separated by more than one
space

~ String may or may not begin (or end) with
spaces

Splitting a String into
Words (2)

❖ Tests:
println words (“This is a sample”)
println words (“ Here is another sample ”)
println words (“JustOneWord”)
println words (“ ”)
println words (“”)

❖ Expected output:
⟨ This, is, a, sample ⟩
⟨ Here, is, another, sample ⟩
⟨ JustOneWord ⟩
⟨ ⟩
⟨ ⟩

words (s:String) = do
result : List⟦String⟧ := ⟨⟩
words : String := “”

c : String := “”
for k ← seq(0#length(s)) do

char = substring(s, k, k+1)
if (char = “ ”) then
if (word ≠ “”) then result := result || ⟨ word ⟩ end
word := “”

else
word := word || char

end
end

if (word ≠ “”) then result := result || ⟨ word ⟩ end
result

end

Splitting a String into
Words (3)

Splitting a String into
Words (4)

Here is a sesquipedalian string of words

Here is a sesquipedalian string of words

Here is a sesquipedalian string of words

maybeWord(s : String):List⟦String⟧ =
if s = “” then ⟨⟩ else ⟨s⟩ end

trait WordState
extends {Associative⟦WordState, ⊕⟧ }
comprises { Chunk, Segment }

opr ⊕(self, other : WordState): WordState
end

Splitting a String into
Words (5)

object Chunk(s : String) extends WordState
opr ⊕(self, other: Chunk): WordState = Chunk(s || other.s)
opr ⊕(self, other:Segment): WordState =

Segement(s || other.l, other.A, other.r)
end

object Segment(l:String, A:List⟦String⟧, r:String)
extends WordState

opr ⊕(self, other:Chunk): WordState =
Segment(l, A, r || other.s)

opr ⊕(self, other:Segment): WordState =
Segment(l, A, || maybeWord(r || other.l) || other.A, other.r)

end

Splitting a String into
Words (6)

processChar(c:String):WordState =
if (c = “ ”) then Segment(“”, ⟨⟩, “”)
else Chunk(c)
end

words(s:String) = do

typecase g of
Chunk ⇒ maybeWord(g.s)

Segment ⇒ maybeWord(g.l) || g.A || maybeWord(g.r)

end
end

Splitting a String into
Words (7)

g =
⊕

k←o#length(s)

processChar(substring(s, k, k + 1))

What’s Going On Here?

❖ Instead of linear induction with one base
case (empty)...

❖ ... we have multiway induction with two base
cases (empty and unit)

❖ Why are these two base cases important?

Representation of
Abstract Collections

❖ Binary Operator: ♢

❖ Leaf operator (“unit”): ☐

❖ Optional empty collection (“zero”): ε

♢

♢ ♢

1 ε ♢ 4

2 3

♢

♢1

♢ 4

2 3

Associativity

♢

♢1

♢ 4

2 3

♢

♢1

♢2

3 4

♢

♢

1 2

♢

3 4

♢

♢ 3

♢ 2

1

♢

4

ε

♢

♢2

♢3

4

♢

1

ε

These are all considered to be equivalent

Catamorphism: Summation

❖ Replace ♢, ☐, ε with +, identity, 0

♢

♢ 3

♢ 2

1

♢

4

ε

+

+ 3

+ 2

1

+

4

0

10

Computation: Summation

❖ Replace ♢, ☐, ε with +, identity, 0

♢

♢ 3

♢ 2

1

♢

4

ε

+

+ 3

+ 2

1

+

4

0

10

Catamorphism: Lists

❖ Replace ♢, ☐, ε with append, ⟨-⟩, ⟨⟩

!1,2,3,4"

♢

♢

1 2

♢

3 4

append

append

1 2

append

3 4

Computation: Lists

❖ Replace ♢, ☐, ε with append, ⟨-⟩, ⟨⟩

!1,2,3,4"

♢

♢

1 2

♢

3 4

append

append

1 2

append

3 4

Representation: Lists

❖ Replace ♢, ☐, ε with append, ⟨-⟩, ⟨⟩

!1,2,3,4"

♢

♢

1 2

♢

3 4

append

append

1 2

append

3 4

Computation: Loops

❖ Replace ♢, ☐, ε with seq, identity, () or
par, identity, ()

~ where seq: (),() → () and par: (),() → ()

for i ← seq(1:4) do print i end

for i ← 1:4 do print i end

seq

seq

seq

seq

() print 1

print 2

print 3

print 4

par

par par

print 1 print 2 print 3 print 4

To Summarize: A BIG Idea

❖ Loops and summations and list constructors
are alike!

~ Generate an abstract collection

~ The body computes a function of each item

~ Combine the results (or just synchronize)

❖ Whether to be sequential or parallel is just
a separable question

~ That’s why they are especially good
abstractions!

~ Make the decision on the fly, to use
available resources

for i← 1 : 1000000 do xi := x2
i end∑

i←1:1000000

x2
i

〈x2
i |i ← 1 : 1000000〉

Another Big Idea

❖ Formulate a sequential loop as successive
applications of state transformation
functions

❖ Find an efficient way to compute and represent
compositions of such functions (this step
requires ingenuity)

❖ Instead of computing

compute

❖ Because function composition is associative,
the latter has a parallel strategy

❖ In the “words in a string” problem, each
character can be regarded as defining a state
transformation function

s := s0; for i← seq(1 : 100000) do s := fi(s) end

s(◦
i←11000000

fi)s0

fi

We Need a New Mindset

❖ DO loops are so 1950s!

❖ So are linear linked lists!

❖ Java™-style iterators are so last
millennium!

❖ Even arrays are suspect!

❖ As soon as you say “first, SUM = 0” you are
hosed. Accumulators are BAD.

❖ If you say, “process subproblems in order,”
you lose.

❖ The great tricks of the sequential past
DON’T WORK.

❖ The programming idioms that have become
second nature to us as everyday tools DON’T
WORK.

trait BinaryPredicate⟦T extends BinaryPredicate⟦T, ∼⟧, opr ∼⟧

opr ∼(self, other: T): Boolean
end

trait Symmetric⟦T extends Symmetric⟦T, ∼⟧, opr ∼⟧

extends { BinaryPredicate⟦T, ∼⟧ }

property ∀(a:T, b:T)(a ∼ b) ↔ (b ∼ a)

end

trait EquivalenceRelation⟦T extends EquivalenceRelation⟦T, ∼ ⟧, opr
∼⟧

extends { Reflexive⟦T, ∼⟧, Symmetric⟦T, ∼⟧, Transitive⟦T, ∼⟧ }
end
trait Integer extends { CommutativeRing⟦Integer, +, –, ·, zero, one⟧,

 TotalOrderOperators⟦Integer, <, ≤, ≥,>, CMP⟧,
 … }

…
end

Fortress

Fortress: A Parallel
Language

❖ High productivity for multicore, SMP, and
cluster computing

❖ Hard to write a program that isn’t
potentially parallel

❖ Support for parallelism at several levels

~ Expressions

~ Loops, reductions, and comprehensions

~ Parallel code regions

~ Explicit multithreading

❖ Shared global address space model with
shared data

❖ Thread synchronization through atomic blocks
and transactional memory

These Are All
Potentially Parallel

f(x) + g(x)

s =
∑

k←1:n

ckxk

do

f(a)
also do

g(b)
end

do

T1 = spawn

T2 = spawn

T1.wait();T2.wait()
end

L = 〈find(k, x)|k ← 1 : n, x ← A〉

for k ← 1 : n do

ak := bk

sum += ckxk

end

Mathematical Syntax 1

❖ Integrated mathematical and object-oriented
notation

❖ Supports a stylistic spectrum that runs from
Fortran to Java™ — and sticks out at both
ends!

~ More conventionally mathematical than
Fortran

- Compare a*x**2+b*x+c and a x2 + b x + c

~ More object-oriented than Java

- Multiple inheritance

- Numbers, booleans, and characters are
objects

- If you prefer #S , defining it is a one-
liner.

~ To find the size of a set S: either |S| or
S.size

Mathematical Syntax 2

× × ⊕ ! ⊗ ! ! ≈ α β γ δ

! ! ! ↔ ∧ ∨ ≡ Γ ε ζ η θ

≤ ≥
∑ ∏

≺ ! ! ! ι κ λ µ

∩ ∪ Θ ⊂ ⊆ ⊇ ⊃ ∈ ξ π ρ σ

! ! ! ! ! ! ¬ /∈ φ χ ψ ω

! ! ! ! 〈 〉 ! ! τ and so on

❖ Full Unicode character set available for
use, including mathematical operators and
Greek letters:

❖ Use of “funny characters” is under the
control of libraries (and therefore users)

Project Fortress

❖ http://projectfortress.sun.com

❖ An open-source project with international
participation

❖ Open source since January 2007

❖ University participation includes:

~ University of Tokyo: matrix algorithms

~ Rice University: code optimization

~ Aarhus University: syntactic abstraction

~ University of Texas at Austin: static type
checking

❖ Also participation by many individuals

http://projectfortress.sun.com
http://projectfortress.sun.com

A Growing Library

❖ The Fortress library now includes over
12,000 lines of code.

~ Integer, floating-point, and string
operations

~ Big integers, rational numbers, intervals

~ Collections (lists, sets, maps, heaps,
etc.)

~ Multidimensional arrays

~ Sparse vectors and matrices

~ Generators and reducers
- Implement loops, comprehensions, and

reductions
- Support implicit parallelism

~ Fortress abstract syntax trees

~ Sorting

What works NOW?

❖ Parallelism in loops, reductions,
comprehensions, tuples

❖ Automatic load balancing via work-stealing

What Works NOW?

❖ Object-oriented type system with multiple
inheritance

❖ Overloaded methods and operators with
dynamic multimethod dispatch

❖ Sets, arrays, lists, maps, skip lists

❖ Pure queues, deques, priority queues

❖ Integers, floating-point, strings, booleans

❖ Big integers, rational numbers, interval
arithmetic

❖ Syntactic abstraction (just barely)

Next steps:

❖ Full static type checker (almost there!)

❖ Static type inference to reduce “visual
clutter”

❖ Parallel nested transactions

❖ Compiler

~ Initially targeted to JVM for full
multithreaded platform independence

~ After that, VM customization for Fortress-
specific optimizations

The Parallel Future

❖ We need to teach new strategies for problem
decomposition.

~ Data structure design/object relationships

~ Algorithmic organization

~ Don’t split a problem into “the first” and
“the rest.”

~ Do split a problem into roughly equal
pieces. Then figure out how to combine
general subsolutions.

~ Often this makes combining the results a
bit harder.

❖ We need programming languages and runtime
implementations that support parallel
strategies and hybrid sequential/parallel
strategies.

❖ We must learn to manage new space-time
tradeoffs.

Conclusion

❖ A program organized according to linear
problem decomposition principles can be
really hard to parallelize.

❖ A program organized according to parallel
problem decomposition principles is easily
run either in parallel or sequentially,
according to available resources.

❖ The new strategy has costs and overheads.
They will be reduced over time but will not
disappear.

❖ This is our only hope for program
portability in the future.

?
Thorbiörn Fritzon
<fritzon@sun.com>

mailto:fritzon@sun.com
mailto:fritzon@sun.com

