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Conventional Wisdoms: 1

old wisdom:

Power is free, but transistors are 
expensive

new wisdom:

“Power Wall”: Power is expensive, but 
transistors are “free”. That is, we can 
put more transistors on a chip than we 
have the power to turn on.



Conventional Wisdoms: 3

old wisdom:

Monolithic uniprocessors in silicon are 
reliable internally, with errors 
occuring only at the pins.

new wisdom:

As chips drop below 65 nm feature 
sizes, they will have high soft and 
hard error rates. [Borkar 2005]
[Mukherjee et al 2005]



Conventional Wisdoms: 7

old wisdom:

Multiply is slow but load and store is 
fast

new wisdom:

“Memory Wall”: Load and store is slow, 
but multiply is fast. Modern 
microprocessors can take 200 clock 
cycles to access RAM, but even floating 
point multiplications can be done in 
four clock cycles on a modern FPU.
[Wulf and McKee 1995]



Conventional Wisdoms: 8

old wisdom:

We can reveal more instruction-level 
parallelism (ILP) via compilers and 
architecture innovation. Examples from 
the past include branch prediction, 
out-of-order execution, speculation, 
and Very Long Instruction Word systems.

new wisdom:

“ILP Wall”: There are diminishing 
returns on finding more ILP. [Hennessy 
and Patterson 2007]



Conventional Wisdoms: 9

old wisdom:

Uniprocessor performance doubles every 
18 months. (Moore’s Law?)

new wisdom:

Power Wall + Memory Wall + ILP Wall = 
Brick Wall. In 2006, performance is a 
factor of three below the traditional 
doubling every 18 months that we 
enjoyed between 1986 and 2002. The 
doubling of uniprocessor performance 
may now take 5 years.



Moore’s Law

Number of transistors doubling every 18 months.

Number of transistors doubling every 24 months.
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High-Performance Multi-
Core Processors

▪
 AMD
▪
 Athlon 64, Athlon 64 FX and Athlon 64 X2 family, dual-core desktop processors.
▪
 Opteron, dual- and quad-core server/workstation processors.
▪
 Phenom, triple- and quad-core desktop processors.
▪
 Sempron X2, dual-core entry level processors.
▪
 Turion 64 X2, dual-core laptop processors.
▪
 Radeon and FireStream multi-core GPU/GPGPU (10 cores, 16 5-issue wide superscalar stream processors 

per core)
▪
 Azul Systems Vega 2, a 48-core processor.
▪
 Cavium Networks Octeon, a 16-core MIPS MPU.
▪
 HP PA-8800 and PA-8900, dual core PA-RISC processors.
▪
 IBM

▪
 POWER4, the world's first dual-core processor, released in 2001.
▪
 POWER5, a dual-core processor, released in 2004.
▪
 POWER6, a dual-core processor, released in 2007.
▪
 PowerPC 970MP, a dual-core processor, used in the Apple Power Mac G5.
▪
 Xenon, a triple-core, SMT-capable, PowerPC microprocessor used in the Microsoft Xbox 360 game console.

▪
 IBM, Sony, and Toshiba Cell processor, a nine-core processor with one general purpose PowerPC core and eight 
specialized SPUs (Synergystic Processing Unit) optimized for vector operations used in the Sony PlayStation 3.

▪
 Intel
▪
 Celeron Dual Core, the first dual-core processor for the budget/entry-level market.
▪
 Core Duo, a dual-core processor.
▪
 Core 2 Duo, a dual-core processor.
▪
 Core 2 Quad, a quad-core processor.
▪
 Core i7, a quad-core processor, the successor of the Core 2 Duo and the Core 2 Quad.
▪
 Itanium 2, a dual-core processor.
▪
 Pentium D, a dual-core processor.
▪
 Teraflops Research Chip (Polaris), an 3.16 GHz, 80-core processor prototype, which the company says will be 

released within the next five years[6].
▪
 Xeon dual-, quad- and hexa-core processors.

▪
 IntellaSys seaForth24, a 24-core processor.
▪
 Nvidia

▪
 GeForce 9 multi-core GPU (8 cores, 16 scalar stream processors per core)
▪
 GeForce 200 multi-core GPU (10 cores, 24 scalar stream processors per core)
▪
 Tesla multi-core GPGPU (8 cores, 16 scalar stream processors per core)

▪
 Sun Microsystems
▪
 UltraSPARC IV and UltraSPARC IV+, dual-core processors.
▪
 UltraSPARC T1, an eight-core, 32-thread processor.
▪
 UltraSPARC T2, an eight-core, 64-concurrent-thread processor.

▪
 Tilera TILE64, a 64-core processor
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High-Performance Single-
Core Processors

Erik Hagersten:



Vector CPU

❖ Early 60’s: Solomon Project

❖ Cray-1 (2, X-MP, Y-MP)

❖ SIMD

~ Single Instruction, Multiple Data

❖ MIMD

~ Multiple Instruction, Multiple Data

❖ AltiVec: Velocity Engine, VMX

❖ Cell

❖ GPU: GPGPU



Multi-Core and CMT
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Many-Core
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?
Homogenous or Heterogenous?

“In six years (2014), we will have 1000 cores”
               –Prof. Anant Agarwal, MIT & Tilera



Programming in a
Dark Future



The Problem

❖ Write a program for 1 CPU, scale it linear 
to n CPUs

❖ But, we don’t understand:

~ What hardware support is needed

~ What language to use

~ How to get it efficient

~ How to get it right

~ What education is needed

❖ We live in interesting times



Concurrency and 
Parallelism Models

❖ Explicit

~ Threads, Processes, Co-Routines

~ Actors

~ Futures

❖ Hinting

~ Quasi-Static Scheduling

❖ Implicit

~ Stream-Based Programming

~ Pure Functional Programming

❖ Data Parallelism

~ Arrays

~ Generators

~ Map/Reduce



interface ArchiveSearcher { String search(String target); }
 class App {
   ExecutorService executor = ...
   ArchiveSearcher searcher = ...
   void showSearch(final String target)
       throws InterruptedException {
     Future<String> future=

executor.submit(new Callable<String>() {
         public String call() {
             return searcher.search(target);
         }});
     displayOtherThings(); // do other things while searching
     try {
       displayText(future.get()); // use future
     } catch (ExecutionException ex) { cleanup(); return; }
   }
 }

Futures



Futures

IO Programming Language:

// async, immediately returns a Future

futureResult := obj @foo

// Do something else while we wait

print futureResult



Map/Reduce

Haskell: (n2)!

n!:

factorial 0 = 1

factorial n = n * factorial (n - 1)

or:

factorial n = foldr (*) 1 [1..n]

map a function to a list:

map (\n -> n*n) [1..n]

hence, (n2)!:

foldr (*) 1 (map (\n -> n*n) [1..n])



Pure Functional

foo( bar(x), fie(y), fum(z) )

Thread 1

bar(x)

Thread 2

fie(y)

Thread 3

fum(z)



Sorting Networks
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Calculating Networks
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Calculating Networks

1

1

144

233

* * * * * * * * * * *

2

3

5

8

13

21

34

55

89

144

233



“

”
–Guy Steele

The bag of programming 
tricks that has served 
us so well for the 
last 50 years is the 
wrong way to think 
going forward and must 
be thrown out.



Why?

❖ Good sequential code minimizes total number 
of operations.

~ Clever tricks to reuse previously computed 
results.

~ Good parallel code often performs 
redundant operations to reduce 
communication.



Why?

❖ Good sequential algorithms minimize space 
usage.

~ Clever tricks to reuse storage.Clever

~ Good parallel code often requires extra 
space to permit temporal decoupling.



Why?

❖ Sequential idioms stress linear problem 
decomposition.

~ Process one thing at a time and accumulate 
results.

~ Good parallel code usually requires 
multiway problem decomposition and 
multiway aggregation of results.



Let’s Add a Bunch
of Numbers

SUM = 0      // OOPS!

DO I = 1, 1000000
SUM = SUM + X(I)

END DO



What Does a 
Mathematician Say?

1000000∑

x=1

xi

∑
xor maybe just

Compare FORTRAN 90: SUM(X).

What, not how?
No commitment to strategy. This is good.



Let’s Add a Bunch
of Numbers

SUM = 0

DO I = 1, 1000000

SUM = SUM + X(I)

END DO

0

+

+

+

+

X(1)

X(2)

X(999999)
X(1000000)



Atomic Update 
Computation Tree

SUM = 0

PARALLEL DO I = 1, 1000000

ATOMIC SUM = SUM + X(I)

END DO

0

+

+

+

+

X(1)

X(2)

X(999999)
X(1000000)



Parallel Computation 
Tree

❖ What sort of code should we write to get a 
computation tree of this shape?

❖ What sort of code would we like to write?

0

+ +

+

+

X(1) X(2) X(999999) X(1000000)X(2)

+ +

...



Finding the Length of a 
LISP List, recursive

23 47 19 11

first rest
car cdr

(define length (list) 
(cond ((null list) 0) 
(else (+ 1 (length (rest list))))))



Finding the Length of a 
LISP List, iterative

23 47 19 11

first rest
car cdr

(define length (list) 
(do ((x list (rest x)) 

(n 0 (+ n 1))) 
((null x) n)))



class List<T> { 
abstract int length(); 

}

class Empty extends List { 
int length() { return 0; } 

}

class Node<T> extends List<T> { 
T first;
List<T> rest; 
int length() { return 1 + rest.length(); } 

}

Length of an Object-
Oriented List



Linear versus Multiway 
Decomposition

❖ These are important program decomposition 
strategies, but inherently sequential. 

~ Mostly because of the linearly organized 
data structure. 

~ Compare Peano arithmetic:
       5 = ((((0+1)+1)+1)+1)+1 

~ Binary arithmetic is much more efficient 
than unary! 

❖ We need a multiway decomposition paradigm: 

~ length [ ] = 0 

~ length [a] = 1 

~ length (a++b) = (length a) + (length b) 

❖ This is just a summation problem: adding up 
a bunch of 1’s!



Splitting a String into 
Words (1)

❖ Given: a string 

❖ Result: List of strings, the words separated 
by spaces 

~ Words must be nonempty 

~ Words may be separated by more than one 
space 

~ String may or may not begin (or end) with 
spaces



Splitting a String into 
Words (2)

❖ Tests:
println words (“This is a sample”) 
println words (“ Here is   another sample ”) 
println words (“JustOneWord”) 
println words (“ ”) 
println words (“”) 

❖ Expected output: 
⟨ This, is, a, sample ⟩ 
⟨ Here, is, another, sample ⟩ 
⟨ JustOneWord ⟩ 
⟨ ⟩ 
⟨ ⟩



words (s:String) = do
result : List⟦String⟧ := ⟨⟩
words : String := “”

c : String := “”
for k ← seq(0#length(s)) do

char = substring(s, k, k+1)
if (char = “ ”) then
if (word ≠ “”) then result := result || ⟨ word ⟩ end
word := “”

else
word := word || char

end
end

if (word ≠ “”) then result := result || ⟨ word ⟩ end
result

end

Splitting a String into
Words (3)



Splitting a String into 
Words (4)

Here is a sesquipedalian string of words

Here is a sesquipedalian string of words

Here is a sesquipedalian string of words



maybeWord(s : String):List⟦String⟧ =
if s = “” then ⟨⟩ else ⟨s⟩ end

trait WordState
extends {Associative⟦WordState, ⊕⟧ }
comprises { Chunk, Segment }

opr ⊕(self, other : WordState): WordState
end

Splitting a String into 
Words (5)



object Chunk(s : String) extends WordState
opr ⊕(self, other: Chunk): WordState = Chunk(s || other.s)
opr ⊕(self, other:Segment): WordState =

Segement(s || other.l, other.A, other.r)
end

object Segment(l:String, A:List⟦String⟧, r:String)
extends WordState

opr ⊕(self, other:Chunk): WordState = 
Segment(l, A, r || other.s)

opr ⊕(self, other:Segment): WordState = 
Segment(l, A, || maybeWord(r || other.l) || other.A, other.r)

end

Splitting a String into 
Words (6)



processChar(c:String):WordState =
if (c = “ ”) then Segment(“”, ⟨⟩, “”)
else Chunk(c)
end

words(s:String) = do

typecase g of
Chunk ⇒ maybeWord(g.s)

Segment ⇒ maybeWord(g.l) || g.A || maybeWord(g.r)

end
end

Splitting a String into 
Words (7)

g =
⊕

k←o#length(s)

processChar(substring(s, k, k + 1))



What’s Going On Here?

❖ Instead of linear induction with one base 
case (empty)...

❖ ... we have multiway induction with two base 
cases (empty and unit)

❖ Why are these two base cases important?



Representation of 
Abstract Collections

❖ Binary Operator: ♢

❖ Leaf operator (“unit”): ☐

❖ Optional empty collection (“zero”): ε

♢

♢ ♢

1 ε ♢ 4

2 3

♢

♢1

♢ 4

2 3



Associativity

♢

♢1

♢ 4

2 3

♢

♢1

♢2

3 4

♢

♢

1 2

♢

3 4

♢

♢ 3

♢ 2

1

♢

4

ε

♢

♢2

♢3

4

♢

1

ε

These are all considered to be equivalent



Catamorphism: Summation

❖ Replace ♢, ☐, ε with +, identity, 0

♢

♢ 3

♢ 2

1

♢

4

ε

+

+ 3

+ 2

1

+

4

0

10



Computation: Summation

❖ Replace ♢, ☐, ε with +, identity, 0

♢

♢ 3

♢ 2

1

♢

4

ε

+

+ 3

+ 2

1

+

4

0

10



Catamorphism: Lists

❖ Replace ♢, ☐, ε with append, ⟨-⟩, ⟨⟩

!1,2,3,4"

♢

♢

1 2

♢

3 4

append

append

1 2

append

3 4



Computation: Lists

❖ Replace ♢, ☐, ε with append, ⟨-⟩, ⟨⟩

!1,2,3,4"

♢

♢

1 2

♢

3 4

append

append

1 2

append

3 4



Representation: Lists

❖ Replace ♢, ☐, ε with append, ⟨-⟩, ⟨⟩

!1,2,3,4"

♢

♢

1 2

♢

3 4

append

append

1 2

append

3 4



Computation: Loops

❖ Replace ♢, ☐, ε with seq, identity, () or
par, identity, ()

~ where seq: (),() → () and par: (),() → ()

for i ← seq(1:4) do print i end

for i ← 1:4 do print i end

seq

seq

seq

seq

() print 1

print 2

print 3

print 4

par

par par

print 1 print 2 print 3 print 4



To Summarize: A BIG Idea

❖ Loops and summations and list constructors 
are alike!

~ Generate an abstract collection

~ The body computes a function of each item

~ Combine the results (or just synchronize)

❖ Whether to be sequential or parallel is just 
a separable question

~ That’s why they are especially good 
abstractions!

~ Make the decision on the fly, to use 
available resources

for i← 1 : 1000000 do xi := x2
i end∑

i←1:1000000

x2
i

〈x2
i |i ← 1 : 1000000〉



Another Big Idea

❖ Formulate a sequential loop as successive 
applications of state transformation 
functions

❖ Find an efficient way to compute and represent 
compositions of such functions (this step 
requires ingenuity)

❖ Instead of computing

compute

❖ Because function composition is associative, 
the latter has a parallel strategy

❖ In the “words in a string” problem, each 
character can be regarded as defining a state 
transformation function

s := s0; for i← seq(1 : 100000) do s := fi(s) end

s( ◦
i←11000000

fi)s0

fi



We Need a New Mindset

❖ DO loops are so 1950s!

❖ So are linear linked lists!

❖ Java™-style iterators are so last 
millennium!

❖ Even arrays are suspect!

❖ As soon as you say “first, SUM = 0” you are 
hosed. Accumulators are BAD.

❖ If you say, “process subproblems in order,” 
you lose.

❖ The great tricks of the sequential past 
DON’T WORK.

❖ The programming idioms that have become 
second nature to us as everyday tools DON’T 
WORK.



trait BinaryPredicate⟦T extends BinaryPredicate⟦T, ∼⟧, opr ∼⟧

opr ∼(self, other: T): Boolean
end

trait Symmetric⟦T extends Symmetric⟦T, ∼⟧, opr ∼⟧

extends { BinaryPredicate⟦T, ∼⟧ }

property ∀(a:T, b:T )(a ∼ b) ↔ (b ∼ a)

end

trait EquivalenceRelation⟦T extends EquivalenceRelation⟦T, ∼ ⟧, opr 
∼⟧

extends { Reflexive⟦T, ∼⟧, Symmetric⟦T, ∼⟧, Transitive⟦T, ∼⟧ }
end
trait Integer extends { CommutativeRing⟦Integer, +, –, ·, zero, one⟧,

        TotalOrderOperators⟦Integer, <, ≤, ≥,>, CMP⟧,
        … }

…
end

Fortress



Fortress: A Parallel 
Language

❖ High productivity for multicore, SMP, and 
cluster computing

❖ Hard to write a program that isn’t 
potentially parallel

❖ Support for parallelism at several levels

~ Expressions

~ Loops, reductions, and comprehensions

~ Parallel code regions

~ Explicit multithreading

❖ Shared global address space model with 
shared data

❖ Thread synchronization through atomic blocks 
and transactional memory



These Are All 
Potentially Parallel

f(x) + g(x)

s =
∑

k←1:n

ckxk

do

f(a)
also do

g(b)
end

do

T1 = spawn

T2 = spawn

T1.wait();T2.wait()
end

L = 〈find(k, x)|k ← 1 : n, x ← A〉

for k ← 1 : n do

ak := bk

sum += ckxk

end



Mathematical Syntax 1

❖ Integrated mathematical and object-oriented 
notation

❖ Supports a stylistic spectrum that runs from 
Fortran to Java™ — and sticks out at both 
ends!

~ More conventionally mathematical than 
Fortran

- Compare a*x**2+b*x+c and a x2 + b x + c

~ More object-oriented than Java

- Multiple inheritance

- Numbers, booleans, and characters are 
objects

- If you prefer #S , defining it is a one-
liner.

~ To find the size of a set S: either |S| or 
S.size



Mathematical Syntax 2

× × ⊕ ! ⊗ ! ! ≈ α β γ δ

! ! ! ↔ ∧ ∨ ≡ Γ ε ζ η θ

≤ ≥
∑ ∏

≺ ! ! ! ι κ λ µ

∩ ∪ Θ ⊂ ⊆ ⊇ ⊃ ∈ ξ π ρ σ

! ! ! ! ! ! ¬ /∈ φ χ ψ ω

! ! ! ! 〈 〉 ! ! τ and so on

❖ Full Unicode character set available for 
use, including mathematical operators and 
Greek letters:

❖ Use of “funny characters” is under the 
control of libraries (and therefore users)



Project Fortress

❖ http://projectfortress.sun.com

❖ An open-source project with international 
participation

❖ Open source since January 2007

❖ University participation includes:

~ University of Tokyo: matrix algorithms

~ Rice University: code optimization

~ Aarhus University: syntactic abstraction

~ University of Texas at Austin: static type 
checking

❖ Also participation by many individuals

http://projectfortress.sun.com
http://projectfortress.sun.com


A Growing Library

❖ The Fortress library now includes over 
12,000 lines of code.

~ Integer, floating-point, and string 
operations

~ Big integers, rational numbers, intervals

~ Collections (lists, sets, maps, heaps, 
etc.)

~ Multidimensional arrays

~ Sparse vectors and matrices

~ Generators and reducers
- Implement loops, comprehensions, and 

reductions
- Support implicit parallelism

~ Fortress abstract syntax trees

~ Sorting



What works NOW?

❖ Parallelism in loops, reductions, 
comprehensions, tuples

❖ Automatic load balancing via work-stealing



What Works NOW?

❖ Object-oriented type system with multiple 
inheritance

❖ Overloaded methods and operators with 
dynamic multimethod dispatch

❖ Sets, arrays, lists, maps, skip lists

❖ Pure queues, deques, priority queues

❖ Integers, floating-point, strings, booleans

❖ Big integers, rational numbers, interval 
arithmetic

❖ Syntactic abstraction (just barely)



Next steps:

❖ Full static type checker (almost there!)

❖ Static type inference to reduce “visual 
clutter”

❖ Parallel nested transactions

❖ Compiler

~ Initially targeted to JVM for full 
multithreaded platform independence

~ After that, VM customization for Fortress-
specific optimizations



The Parallel Future

❖ We need to teach new strategies for problem 
decomposition.

~ Data structure design/object relationships

~ Algorithmic organization

~ Don’t split a problem into “the first” and 
“the rest.”

~ Do split a problem into roughly equal 
pieces. Then figure out how to combine 
general subsolutions.

~ Often this makes combining the results a 
bit harder.

❖ We need programming languages and runtime 
implementations that support parallel 
strategies and hybrid sequential/parallel 
strategies.

❖ We must learn to manage new space-time 
tradeoffs.



Conclusion

❖ A program organized according to linear 
problem decomposition principles can be 
really hard to parallelize.

❖ A program organized according to parallel 
problem decomposition principles is easily 
run either in parallel or sequentially, 
according to available resources.

❖ The new strategy has costs and overheads. 
They will be reduced over time but will not 
disappear.

❖ This is our only hope for program 
portability in the future.
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