
LinuxBIOS presentation

Christer Weinigel, Weinigel Ingenjörsbyrå AB
www.weinigel.se

Doing Linux programming close to the hardware

Presentation overview

Three parts:

1) Introduction to LinuxBIOS and concepts

2) Porting LinuxBIOS to the Nano Computer

3) Questions

What is LinuxBIOS

Open Source firmware for PC systems replacing a
normal PC BIOS

Started by Ronald Minnich in 1999 at the Los
Alamos National Laboratory (LANL)

Purpose:
Make it easier to manage large computing clusters

Well suited for embedded systems: smaller, faster,
less complex and cheaper than a PC BIOS

What does a PC BIOS do?
Initializes the hardware

Loads the operating system

Provides a simple I/O interface to the operating
system and applications:

INT 10h - Video
INT 13h - Disk
INT 15h - System information

Today operating systems have their own drivers.
BIOS is only used to load the OS.

Hardware initialization

Configure the CPU and the chipset

Determine memory size

Configure onboard devices:
(Super I/O, keyboard, floppy etc.)

Scan PCI bus and allocate resources for PCI devices.
Also calls any expansion BIOS on a PCI card.

Probe for IDE hard disks

Loading Linux
 BIOS loads the
 boot block.

 Boot block loads
 rest of LILO using
 INT 13h calls

 LILO loads
 kernel image

 Jumps to kernel
 16 bit entry point

Disk layout
BB

LILO

Linux image

The Linux image
The 16 bit startup code does BIOS INT 10h
and INT15h calls to determine the video mode
and the amount of memory.

Switches to 32 bit mode,
uncompresses the Linux
kernel and jumps to the
kernel entry point.

Linux kernel initializes hardware:
Scan PCI bus, fix up after buggy BIOS

 Probe for IDE hard disks

Linux image structure
16 bit startup code

32 bit startup code

Linux kernel (compressed)

Disadvantages of a PC BIOS

Much duplicated functionality:
PCI scan done twice
Slow IDE probe done twice
Drivers in BIOS, drivers in OS

No remote management
Screen and keyboard needed to do configuration

Large and complex due to backward compatibility

Often has bugs

The LinuxBIOS way

Only do minimal hardware initialization to get the
CPU and chipset started and enter 32 bit mode as
soon as possible.

Copy the Linux kernel from flash to RAM

Jump to the Linux kernel entry point

Let Linux do the rest of the hardware initialization

Use a full Linux system to load the OS

Milestones

Ronald Minnich started LinuxBIOS September 1999

Got Linux to boot another Linux

Started on hardware support. Finally SiS, a chipset
maker, got involved and helped with the hardware
support for their chipsets.

First booted Linux from LinuxBIOS May 2000

LinuxBIOS today
LinuxBIOS has evolved since the beginning and has
become more complex.

The hardware initialization does a PCI scan and can
probe for IDE hard drives.

Fills in the LinuxBIOS table with information that
the operating system will need. Memory size etc.
Gives better separation from the OS.

Loads the OS into memory and jump to its entry
point.

Operating systems

In return for the complexity, LinuxBIOS can do
more. It is now possible to boot other operating
systems such as:

Windows CE
Plan 9
memtest86 - a memory tester
Etherboot - a BOOTP/TFP client

As long as the OS can get its information from the
LinuxBIOS table it will work. And LinuxBIOS still
fits in a 32kByte ROM

Comparison

LinuxBIOS

� Small <32kByte

� Fast

� Customizable

� Mostly written in C,
clean and portable

� No license fees

� Currently lags the
hardware development

� Nonstandard

PC BIOS

� Large, 256 kByte

� Slow

� Rigid

� Much assembly
language, complex

� Per unit license fees

� Better manufacturer
support

� De facto standard

Supported mainboards and chipsets

Download the latest source from:
http://freebios.sourceforge.net/

To get the list of supported mainboards:
ls freebios/src/mainboard/*/*

To get a list of supported chipsets:
ls freebios/src/*bridge*/*/*

List of mainboards and chipsets

Mainboards:
advantech pcm-5823 advantech pcm-9574
asus a7m asus cua
bcm e100 cocom voyager2
compaq ds10 dell 350
digitallogic smartcore-p5
elitegroup k7sem generic serverworks
gigabit ga-6bxc gigabit ga-6oxe
ibm t23
intel l440bx intel l440gx
irobot proto1 lanner em-370
leadtek winfast6300 lippert roadrunner2
matsonic ms7308e nano nano
pcchips m754lmr pcchips m758lmr+
pcchips m810lmr
rcn dc1100s rlx 800i
sis 540 sis 550
sis 635 sis 735
supermicro p4dc6 supermicro p4dc6p
supermicro p4dpr
supertek st3wt
technoland sbc710
tyan guiness tyan s1834
tyan s1846
via vt5292 via vt5426

Chipsets:
acer m1631 alpha tsunami
amd amd76x intel 430tx
intel 440bx intel 440gx
intel 82815ep intel 82830
intel 82860 intel E7500
micron 21PAD nsc gx1
via vt694 via vt8601
NSC scx200 sis 540
sis 550 sis 630
sis 635 sis 730
sis 735 TI pci1225
acer m1535 acer m1543
amd amd766 intel 82801
intel 82801ca intel 82806
intel 82870 intel piix4e
nsc cs5530 nsc scx200
via vt8231 via vt82c686

Concepts summary

LinuxBIOS has taken on some features from normal
PC BIOSes and has become more complex but also
more mature.

Is still much smaller, more flexible and more
maintainable than a normal BIOS.

Allows faster and more stable booting at a price that
can't be beat.

The Nano Computer

The Nano Computer is an embedded computer from
Nano Computer Systems AB:

http://www.nano-system.com/

The system is based on a reference design for the
National Semiconductor SC2200 processor. This
single chip contains most of the parts needed to
build a 266MHz Pentium class PC.

Nano Computer block diagram

SC2200
CPU

DP83815
Ethernet

DP83815
Ethernet

Compact
Flash

IDE
Hard Disk

SDRAM
16-256MB

ROM
256kB

Intel Flash
0/4/8/16MB

PCI

IDE

Memory

PCI
Slot

Getting started

Find out if your components are supported:
CPU, northbridge, southbridge, SuperI/O, etc.

If yes, write a new board description file, add some
code to to mainboard fixups and a table describing
the IRQ routing on the board.

If not, implement support for your CPU and chipset.
This can be a large job, but often new chipsets are
slight variations of older chipsets so it's usually not
too hard.

Source structure

freebios/src/arch/CPU

freebios/src/northbridge/VENDOR/CHIP

freebios/src/southbridge/VENDOR/CHIP

freebios/src/northsouthbridge/VENDOR/CHIP

freebios/src/superio/VENDOR/CHIP

freebios/src/mainboard/VENDOR/CHIP

A twisty little maze of includes

Generic 586 init - 16 and 32 bit assembly

Early chipset/board initialization - 32 bit assembly

Chipset specific memory setup - 32 bit assembly

Generic setup code - 32 bit assembly

Generic setup code - C

Generic code to do a PCI scan - C

Northbridge, southbridge and mainboard fixups - C

Generic C code to load and start the OS - C

A mainboard Config file

From src/mainboard/nano/nano/Config:

arch i386
cpu p5
mainboardinit cpu/i386/entry16.inc
mainboardinit cpu/i386/reset16.inc
mainboardinit \

southbridge/nsc/scx200/scx200_setup.inc
mainboardinit pc80/serial.inc
mainboardinit arch/i386/lib/console.inc

northbridge nsc/gx1
southbridge nsc/scx200

option SCx200_PMR=0x02860891

Trying it out

Compile Linuxbios for your mainboard.

Find a tool to program the ROM chip of your
motherboard.

Connect a null modem cable to the serial port and
finally try it out.

Inside the SC2200

Cyrix
586+ CPU

SDRAM
16-256MB

ROM
256kB

Northbridge

Southbridge

PCI bus

Super I/O

RS232

Adding a new northbridge
Add assembly code to do minimal initialization of
the CPU and chipset:

From freebios/src/northbridge/nsc/gx1/Config:

mainboardinit northbridge/nsc/gx1/cpu_setup.inc
mainboardinit northbridge/nsc/gx1/gx_setup.inc
mainboardinit \

northbridge/nsc/gx1/northbridge_setup.inc

Rather hard since there is no way of getting good
debug messages out of the system. An ICE is a very
good idea, but even one GPIO pin connected to a
LED can be of great help.

Getting debug messages

The next step was to enable a serial port to get better
debug messages. This requires much on the SC2200
since the SuperI/O is a behind the south bridge
which must be enabled first.

From src/mainboard/nano/nano/Config:
mainboardinit \

southbridge/nsc/scx200/scx200_setup.inc

SDRAM initialization

Time to tackle a hard one, getting SDRAM
initializing and autosizing to work.
The memory controller is a part of the northbridge.

From freebios/src/northbridge/nsc/gx1/Config:
raminit northbridge/nsc/gx1/raminit.inc

With the serial console working it was a bit easier.
It was possible to dump register and memory
contents to the serial port.

The rest of the port

From freebios/src/southbridge/nsc/scx200/Config:
object southbridge.o

The file southbridge.c file contains some code
to enable the IRQ mapping and enable the IDE and
USB controllers.

Other than this only minor additions and helper
functions. No changes needed to the generic code.

How hard is it?

It took me about 2 weeks to get LinuxBIOS running
on the Nano Computer.

1 week to do CPU and northbridge initialization

1 week to implement memory sizing

a few days for the rest of the north- and
southbridge code

Modularization
Originally the SC2200 support was a combined
north- and southbridge definition. People were
asking for GX1 and CS5530 support. Same CPU
core and northbridge, but different southbridge.

Took me about a week to do a port to such a board.
Most time was spent on designing a structure so that
the two ports could share code. The new structure
shares the CPU initialization and SDRAM sizing
code and reused parts of the southbridge code.

Didn't take long before there were three more ports
for different GX1/CS5530 boards.

Porting summary

Easy to do a port to a new mainboard with a
supported chipset and good documentation.

Harder to add support for a new chipset, especially if
the chipset has bugs or incomplete documentation.

Often possible to reuse code already in the tree.

All this gets easier with good tools such as an ICE,
ROM emulator and a logic analyzer.

Future directions

What is happening to LinuxBIOS for embedded
systems?

Adding more features from a normal BIOS:

BIOS INT emulation

PCI expansion rom emulation (for VGA cards)

Booting from IDE and network (using Etherboot
or GRUB)

Adding a serial monitor (OpenBOOT/Tiara)

Dual booting
Possible to do tricks such as
dual booting from flash

If the main OS is ok, LinuxBIOS
boots directly into it. If the
checksum is bad or the booting
fails it boots into the rescue
system.

The rescue system can connect to
a remote system, do a crash dump,
install a new OS or whatever.

LinuxBIOS 64k

Linux Rescue 512k

Main OS

Future of the NatSemi port

Things I'd like to add to the NatSemi port:

Support for VSA/SMM mode, either do a custom
SMM BIOS, or allow the NatSemi VSA BIOS to
work with LinuxBIOS.

Support for video and audio

Support for Save to RAM

Other projects

OpenBoot - forth
Tiara - OpenBoot with boot monitor
PPCboot - PowerPC and ARM (etrax)
Lots of loaders for ARM
EtherBoot - BOOTP/TFTP client
oskit - Netboot

Questions

Read More

Christer Weinigel, Weinigel Ingenjörsbyrå AB
http://www.weinigel.se/

The LinuxBIOS mailing lists and web page

The Nano Computer
http://www.nano-system.com/

National Semiconductor - Internet appliances
http://www.national.com/

