25.1. Model: Balmer’s formula predicts a series of spectral lines in the hydrogen spectrum.
Solve: Substituting into the formula for the Balmer series,

S 9LI8nm . OLI8nm_, .
11 T 1
2 26

where n =3, 4, 5, 6, ..

. and where we have used n = 6. Likewise for » = 8 and n = 10, 4 =389.0 nm and
A=379.9 nm.



25.2. Model: Balmer’s formula predicts a series of spectral lines in the hydrogen spectrum.
Solve: Balmer’s formula is

_91.18 nm
(11
2

Asn— oo, 1/n* 0. Thus, 4,_,, =4(91.18 nm) =364.7 nm.

n—0

A n=3,4,5,6, ...



25.3. Model: Balmer’s formula predicts a series of spectral lines in the hydrogen spectrum.
Solve: Using Balmer’s formula,

1=389.0nm = 18mm 11523440 =38

1 1 4 n
2



25.4. Model: The angles of incidence for which diffraction from parallel planes occurs satisfy the Bragg
condition.
Solve: The Bragg condition is 2d cosé, =mA, wherem =1, 2, 3, ... For first and second order diffraction,

2d cos6, =(1)A 2d cost, =(2) A

Dividing these two equations,

cosb,

cosf, =2= 0, =cos™'(2cosf,) =cos ' (2c0s68°) = 41°



25.5. Model: The angles of incidence for which diffraction from parallel planes occurs satisfy the Bragg
condition.
Solve: The Bragg condition is 2d cos8, = mA. For m = 1 and for two different wavelengths,

2d cos6, =(1)4, 2d cosd; = (1) A

Dividing these two equations,

cosOl _ A, cosO _015nm _ o 1(0.4408) = 64°
cosf, A  cos54° 0.20 nm



25.6. Model: The angles corresponding to the various orders of diffraction satisfy the Bragg condition.
Solve: The Bragg condition for m = 1 and m = 2 gives

2dcos6 =(1)A  2dcos6,=(2)A
Dividing these two equations,

cosf, = 00;02 = COS;S =6, =cos” (—008245 j= 69.3°




25.7. Model: The angles corresponding to the various diffraction orders satisfy the Bragg condition.
Solve: The Bragg condition is 2d cosé,, =mA , where m = 1, 2, 3, ... The maximum possible value of m is the

number of possible diffraction orders. The maximum value of cosé,, is 1. Thus,

2d=mi s m=2d _2(01800m)
A (0.085 nm)

We can observe up to the fourth diffraction order.



25.8. Model: Use the photon model of light.
Solve: The energy of the photon is
3.0x10° m/s

4 —34
E, . =hf =h—=(6.63x107* Js)| =————
proen =1 y) ( )(500x1091n

J=398xu)”J

Assess: The energy of a single photon in the visible light region is extremely small.



25.9. Model: Use the photon model of light.
Solve: The energy of the single photon is

Cj_ (6.63x107 Js)(3.0x10° m/s)

. =1.99x107" J
A

E.  =hf=h
o = 1f ( 1.0x10° m

= Epy = Ny By =(6.023x107)(1.99x107° 1) =1.2x10° J

photon

Assess:  Although the energy of a single photon is very small, a mole of photons has a significant amount of
energy.



25.10. Model: Use the photon model of light.
Solve: The energy of a photon with wavelength A, is E, = if, = hc/A,. Similarly, E, = hc/4,. Since E, is equal

to 2F,,

he ke _ , _A_600m

Lo A4 2 2

Assess: A photon with 4 = 300 nm has twice the energy of a photon with 4 = 600 nm. This is an expected
result, because energy is inversely proportional to the wavelength.

=300 nm



25.11. Model: Use the photon model of light.
Solve: The energy of the x-ray photon is

8
E=hf:h(£j=(6.63x1034 1) 2L WS )5 xrot
P 1.0x10” m

Assess: This is a very small amount of energy, but it is larger than the energy of a photon in the visible
wavelength region.



25.12. Solve: Your mass is, say, m ~ 70 kg and your velocity is 1 m/s. Thus, your momentum is p = mv = (70
kg)(1 m/s)=70 kg m/s. Your de Broglie wavelength is

_h_6.63x107* Js
p 70 kg m/s

~9x107° m



25.13. Solve: (a) The baseball’s momentum is p = mv = (0.200 kg)(30 m/s) = 6.0 kg m/s. The baseball’s de
Broglie wavelength is

6.63x107* Js

h_ —1.1x10* m
p 6.0 kg m/s

A=

(b) Using 2 =h/p="h/mv, we have

—34
_h_ 663100 14 qgn g
mA (0200 kg)(0.20x10" m)




25.14. Visualize: We'll employ Equations 25.8 (1 =h/p) and 25.9 (E = p*/2m) to express the wavelength in
terms of kinetic energy.

Solve: First solve Equation 25.9 for p: p =+/2mE.

h 6.63x107J-s

= =1.0 nm

amE J2(9-11x107" kg)(2.4x107°1)

h
p

Assess: The energy given is about 1.5 eV, which is a reasonable amount of energy. The resulting wavelength is a
few to a few dozen times the size of an atom.



25.15. Solve: (a) For an electron, the momentum p =my = (9.1 1x107 kg)v . The de Broglie wavelength is

34
A= 020x10° m = 020x10° m = 0OXMOIS 5 610° mis

p (9.11x107" kg)v

(b) For a proton, p=mv= (1 67x107 kg)v. The de Broglie wavelength is

34
A= 020x10° m=020x10° m = 20310 Is o 0x10° mis

P (1.67x107 kg)v



25.16. Model: The momentum of a wave-like particle has discrete values given by p, =n(h/2L) where n =

1,2,3,....
Solve: Because we want the smallest box and the momentum of the electron can not exceed a given value, n
must be minimum. Thus,

p—mv—h:L h 6.63x107" Js
=my=——= L=

o =0.036
2L 2mv 2(9.11x107" kg )(10 m/s) m




25.17. Model: A confined particle can have only discrete values of energy.
Solve: From Equation 24.14, the energy of a confined electron is

h2
n:ﬁnz n:1,2,3,4,‘..
m

The minimum energy is

h? h 6.63x107* Js

E = ~=1L= = =2.0x10" m=0.20 nm
8mL VEME,  [8(9.11x10 kg)(1.5%10" 1)




25.18. Model: Model the 5.0-fm-diameter nucleus as a box of length L = 5.0 fm.
Solve: The proton’s energy is restricted to the discrete values

R (6.63x10™ Js) n?

=——n’= 5 =(1.316x107" J)n?
8mL 8(1.67x107" kg)(5.0x10™" m)

n

wheren=1,2,3, ... Forn=1, E =13x10"" I, forn =2, E, =(1.316x10™* J)4=5.3x10"" J, and for n = 3,
E,=9E =12x10""17.



25.19. Model: The generalized formula of Balmer predicts a series of spectral lines in the hydrogen
spectrum.
Solve: (a) The generalized formula of Balmer

91.18 m
11
m o

with m = 1 and n > 1 accounts for a series of spectral lines. This series is called the Lyman series and the first
two members are

A=

2 =2LI8m o 6nm 4

~91.18 nm
1
-5)

=7y
)
Forn=4andn=5, 4, =973 nmand 4, =95.0 nm.

b) The Lyman series converges when 7 — oo . This means 1/n* — 0 and 2 — 91.18 nm.
( y g

=102.6 nm

(c) For a diffraction grating, the condition for bright (constructive interference) fringes is dsiné, = pA, where p =
1,2, 3, ... For first-order diffraction, this equation simplifies to dsinéd = A. For the first and second members of
the Lyman series, the above condition is dsiné, =4, =121.6 nm and dsiné, = 4, =102.6 nm. Dividing these two
equations yields

sind, = (102.6 nm

sing, =(0.84375)sin6,
121.6 nm

The distance from the center to the first maximum is y = Ltan@. Thus,

an6, N 0.376 m N

0, =14.072° = sin, = (0.84375)sin (14.072°) = 4, = 11.84°
L 15m

Applying the position formula once again,

¥, =Ltan6, =(1.5 m)tan(11.84°)=0.314 m = 31.4 cm



25.20. Model: The generalized formula of Balmer predicts a series of spectral lines in the hydrogen
spectrum.
Solve: (a) The generalized formula of Balmer

with m = 3, and n > 3 accounts for a series of spectral lines. This series is called the Paschen series and the
wavelengths are

91.18 nm 820.62 n’
A= =
11 n* -9
e

The first four members are 4, =1876 nm, 4, =1282 nm, 4, =1094 nm, and 4, =1005 nm
(b) The Paschen series converges when n — co. This means

LI RN —91'( 118)2“‘“ =820.6 nm
n 1
3

(c) For a diffraction grating, the condition for bright (constructive interference) fringes is dsiné, = pA, where p =

1,2, 3, ... For first-order diffraction, this equation simplifies to dsin@ = 4. For the first and second members of
the Paschen series, the condition is dsiné, = 4, and dsiné, = 4, . Dividing these two equations yields

sind, = sing,| 22 =sin0](M]=(0.6834)sin9]
A 1876 nm

The distance from the center to the first maximum is y = Ltané . Thus,

tand, = % = 0162& =0.4047 = 6,=22.03° = sinf, =(0.6834)sin22.03° = &, =14.85°
Sm
Applying the position formula once again,

¥, =Ltan6, = (1.5 m)tan14.85°=0.398 m =39.8 cm



25.21. Model: Use the photon model of light.
Solve: (a) The wavelength is calculated as follows:

¢ (6.63x107 Js)(3.0x10° m/s) N
Eamma:hf:h —|=>A1= 13 =2.0x10 m
: A 1.0x107J

(b) The energy of a visible-light photon of wavelength 500 nm is

=3.978x107" J

h( cj (6.63x107 Js)(3.0x10° m/s)
e =) 500x10” m
The number of photons # such that E =nE is

gamma visible

Epnma  1.0x107° J
E 3.978x107"° J

visible

n= =2.5x10°



25.22. Model: Use the photon model.
Solve: The energy of a 1000 kHz photon is

Eyon = hf =(6.63x107 Js)(1000x10° Hz) =6.63x107* J

The energy transmitted each second is 20x10° J. The number of photons transmitted each second is
20x10° J/6.63x107 J= 3.0x10"".



25.23. Model: Use the photon model for the laser light.
Solve: (a) The energy is

¢ 3x10° m/s
E . =hf=h] —|=(6.63x107* Js) ———— |=3.1x107" J
pron = B (zj ( )[633><109 mJ

(b) The energy emitted each second is 1.0x107° J. The number of photons emitted each second is
1.0x107 J/3.14x107" J = 3.2x10".



25.24. Model: Use the photon model for the incandescent light.
Solve: The photons travel in all directions. At a distance of r from the light bulb, the photons spread over a
sphere of surface area 47”. The number of photons per second per unit area at the location of your retina is

18 -1
A0S 538710 s m?
47(10x10° m)

The number of photons that enter your pupil per second is

2.387x10° s 'm? x7(3.5x107 m) =9.2x10* 5!



25.25. Model: Use the photon model of light and the Bragg condition for diffraction.
Solve: The Bragg condition for the reflection of x-rays from a crystal is 2d cosé, =mA. To determine the

angles of incidence 6,, we need to first calculate A. The wavelength is related to the photon’s energy as
E =hc/A. Thus,

6.63x107* Js)(3.0x10° m/s
_he | )(_15 ) 1 326x10" m
E 1.50x107" J

From the Bragg condition,

1.326x107"°
0, =cos'l(2—jj=cos'{(2(o 2? 1079111 )m] =cos ' (0.3157m)= 6, =cos ™ (0.3157) =71.6°
21x m

Likewise, 6, =cos™'(0.3157x2)=50.8° and 6, =18.7°. Note that 6, =cos '(0.3157x4) is not allowed because

the cosé cannot be larger than 1. Thus, the x-rays will be diffracted at angles of incidence equal to 18.7°, 50.8°,
and 71.6°.



25.26. Model: The angles for which diffraction from parallel planes occurs satisfy the Bragg condition.
Solve: We cannot assume that these are the first and second order diffractions. The Bragg condition is
2d cosf, =mA. We have

2d cos45.6°=mA 2d c0s21.0°=(m+1)A

Notice that 6, decreases as m increases, so 21.6° corresponds to the larger value of m. Dividing these two
equations,

COSA36% _ M _ (7494 = m=3
c0s21.0° m+1

Thus these are the third and fourth order diffractions. Substituting into the Bragg condition,

d= 3x0.0700x10~° m
2c0s45.6°

=1.50x10"" m= 0.150 nm




25.27. Model: The x-ray diffraction angles satisfy the Bragg condition.

Solve: (a) The Bragg condition (2d cosé,, =mA ) for normal incidence, 6, = 0°, simplifies to 2d =mA. For a
thin film of a material on a substrate where 7, < Hmaerial < Hsubstrates CONStructive interference between the two
reflected waves occurs when 2d =mA, where A is the wavelength inside the material.

(b) From a thin film with a period of 1.2 nm, that is, with d = 1.2 nm, the two longest x-ray wavelengths that will
reflect at normal incidence are

2d 2d
ﬂq—T /12—7

This means that 4, =2(1.2nm)=2.4 nm and 4, =1.2 nm.



25.28. Solve: A small fraction of the light wave of an appropriate wavelength is reflected from each little
“bump” in the refractive index. These little bumps act like the atomic planes in a crystal. The light will be
strongly reflected (and hence blocked in transmission) if it satisfies the Bragg condition at normal incidence
(6=0).

mA_2dng, 2(0.45x10 m)(1.50)

glass

2d =mA

glass =

=1.35 ym
m 1



25.29. Model: Particles have a de Broglie wavelength given by A="7/p. The wave nature of the particles

causes an interference pattern in a double-slit apparatus.
Solve: (a) Since the speed of the neutron and electron are the same, the neutron’s momentum is

— _m, _m, _m
Py =my, = my, = my, = P
m m m

e e (5

where m, and m, are the neutron’s and electron’s masses. The de Broglie wavelength for the neutron is

A=t _hp_,m

Py Pe Py m,

From Section 22.2 on double-slit interference, the fringe spacing is Ay = AL/d. Thus, the fringe spacing for the
electron and neutron are related by

A m 9.11x107" kg
Ay =22 Ay =2 Ay =| Z—"— 25 115107 m)=8.18x107 m=0.818 um
I T T [1.67><1027 kg ( ) g

(b) If the fringe spacing has to be the same for the neutrons and the electrons,

Aycszn:lcz/in:L: h :>vn:vcm°

meve mnvn ml’\

9.11x107" kg
1.67x107 kg

:(2,o><1o6 m/s)[ j=1.1><103 m/s



25.30. Model: Electrons have a de Broglie wavelength given by A =74/p. The wave nature of the electrons

causes a diffraction pattern.
Solve: The width of the central maximum of a single-slit diffraction pattern is given by Equation 22.22:

21L 2Lh 2Lh 2(1.0m)(6.63><10'34Js)
o 2L 2 ZLh

— 4 =
a ap amv  (1.0x10° m)(9.11x10™" kg)(1.5x10° m/s)_9'7X10 m =097 mm




25.31. Model: Neutrons have a de Broglie wavelength given by A =h/p. The wave nature of the neutrons
causes a double-slit interference pattern.
Solve: Measurements show that the spacing between the m = 1 and m = —1 peaks is 1.4 times as long as the
length of the reference bar, which gives the real fringe separation Ay = 70 gm. Similarly, the spacing between the
m =2 and m =-2 is 2.8 times as long as the length of the reference bar and yields Ay = 70 xum.

The fringe separation in a double-slit experiment is Ay = AL/d. Hence,

6.63x107* Js)(3.0
aoyd _h_h _Ad KL (6.63x10 Is)(3.0m)

L p omv L aymd (70x10° m)(1.67x10™" kg)(0.10x10” m) =170ms



25.32. Model: Electrons have a de Broglie wavelength given by A="4h/p.
Visualize: Please refer to Figure 25.11. Notice that a scattering angle ¢ =60° corresponds to an angle of
incidence 6 =30°.
Solve: Equation 25.6 describes the Davisson-Germer experiment: Dsin(26,)=mA. Assuming m = 1, this
equation simplifies to Dsin26 = A. Using A = h/mv , we have

h 6.63x107" Js

= = =1.95x10"" m=0.195
mvsin20  (9.11x107" kg)(4.30x10° m/s)sin(60°) e "




25.33. Model: A confined particle can have only discrete values of energy.
Solve: (a) Equation 25.14 simplifies to

W, (6.63x107* Js)’

8wl 8(9.11x10™" kg)(0.70x10"" m)

> =(1.231x10™° 1)’

Thus, E, =(1.231x10"°1)(1) =1.2x10™"J, E, =(1.231x10™"°1)(2*) =4.9x10™"J, and E, =1.1x10"1.
(b) The energy is E,—E, =4.9x10"" J —1.2x10™" J = 3.7x107" J.
(¢) Because energy is conserved, the photon will carry an energy of E, — E, =3.69x10™" J . That is,

he  (6.63x107 Js)(3.0x10° mys)

he
E,~E=E, . =hf=—=A= = =540 nm
2B = Epon = =75 E,-E, 3.69x107"° J




25.34. Model: A particle confined in a one-dimensional box has discrete energy levels.
Solve: (a) Equation 24.14 for the n = 1 state is

i (6.63x107 Js)’

E,, = 5=
8mL’  8(10x10~ kg)(0.10 m)

>=55x10"17

The minimum energy of the Ping-Pong ball is £, =5.5x107* J.
(b) The speed is calculated as follows:

2(5.50x10*64 J)

T =3.3x10"" m/s
X g

E =550x10T = 1mv” =1(10x10” kg)v* = v =



25.35. Model: A particle confined in a one-dimensional box has discrete energy levels.
Solve: Using Equation 24.14 for n =1 and 2,

hZ

(6.63x107* Js)2 (3= 1.809%10™" Jm>
8(9.11x10™" kg) L’ I

—37 2
Lo [I0OI0T I e
1.0x107" J

E

2

-E

1

=T (22-1) =1.0x10™ T =



25.36. Visualize: From the figure we see that the wavelength is 2.0 nm. We'll employ Equations 25.8
(A=h/p) and 25.9 (E = p*/2m) to express the kinetic energy in terms of wavelength.
Solve:

> (nay (663x1071-5/2.0 nm)
E=£ - = =6.0x10™]
2m  2m 2(9.11x107'Kg)

Assess: This energy is a little less than one eV, which is reasonable.



25.37. Visualize: The strategy is to take ratios to find » and then plug it back in to find L.

Solve:
2

2
E,. _8ml D" ey 64x101
E, n () (n)  3.6x10°J
8ml?

Cancel x10™°] and take square roots.

n+1 64 4
|
n 36 3
So E, =3.6x10""J. Now solve for L.

L Bn (6.63x107 J-5)(3) o i
\8mE, \8mE, J8(1.67x107 kg)(3.6x107 1)

Assess: This is not an atomic-sized box, but a nuclear-sized box; that’s OK for neutrons.




25.38. Model: The allowed energies of a particle of mass m in a two-dimensional square box of side L are

2

Enm = 2
8mL

(n2 + mz)
Solve: (a) The minimum energy for a particle is forn =m =1:

h2 5 5 hZ
Ewn=bu=g 1 (Fer)= Aml?

(forn=1,m=2andn=2,m=1), 4E

(b) The five lowest allowed energies are E 2E i
(forn=2,m=3andn=3,m=2).

min® 2 "~min

5E. (forn=1,m=3andn=3,m=1),and BE

min

(forn=2,m=2),



25.39. Model: A particle confined in a one-dimensional box of length L has the discrete energy levels given
by Equation 24.14.
Solve: (a) Since the energy is entirely kinetic energy,
o, P2 2 h
L= S =——=
8mL 2m

(b) The first allowed velocity is

34
y, = 6;3613“0 s - =1.82x10° m/s
2(9.11x107" kg )(0.20x10” m)

Forn=2andn=3,v,=3.64 x 10° m/s and v; = 5.46 x 10° m/s.



25.40. Model: Sets of parallel planes in a crystal diffract x-rays.
Visualize: Please refer to Figure CP25.40.

Solve: The Bragg diffraction condition is 2dcosf, =mA, where d is the interplanar separation. Because

smaller m values correspond to higher angles of incidence, the diffraction angle of 71.3° in the x-ray intensity
plot must correspond to m = 1. This means

0.10x10”° m

=1.56x10"" m
2(cos71.3°)

2d c0s71.3°=1(0.10x10” m)=d
The cosines of the three angles in the x-ray intensity plot are cos71.3°=0.321, c¢0s50.1°=0.642, and
c0s15.8°=10.962. These are in the ratio 1:2:3, which tells us that these are the m =1, 2, and 3 diffraction peaks
from a single set of planes with d =0.156 nm.
We can see from the figure that the atomic spacing D of this crystal is related to the interplanar separation d
by
d  0.156 nm

=— =— =0.18 nm
sin 60° sin60°




25.41. Model: Sets of parallel planes in a crystal diffract x-rays.
Visualize: Please refer to Figure 25.7.
Solve: (a) The Bragg diffraction condition is 2d cos&, = mA. The plane spacing is dx= 0.20 nm and the x-ray

wavelength is 4 =0.12 nm. Thus
ma  m(0.12x10” m)
2d,  2(0.20x10” m)

cosf, = =(0.3)m=6,, =cos ™' (0.3)=72.5°

Likewise for m = 2 and m = 3, ,, =cos™'(0.6)=53.1° and 6,, =cos '(0.9) =25.8°. These three angles for
the x-ray diffraction peaks match the peaks shown in Figure 25.7c.

(b) The new interplaner spacing is d, =d, / V2 =0.141nm (see Figure 25.7b). The Bragg condition for the tilted
atomic planes becomes

mA _0.4243m

cosf, =
B

Form =1, 6, =cos™(0.4243) = 64.9°. For m =2, 6,, =cos ™' (0.8486)=31.9°.

(¢) The crystal is already tipped by 45° to get the tilted planes (see Figure 25.7b). So, for m = 1
6,=64.9°-45°=  19.9°. €=64.9°+45°=109.9° also, but we can’t see beyond 90°. For m = 2,

El

6, =31.9°+45°=76.9°. These two angles match the angles in the diffraction peaks of the tilted planes.



25.42. Model: This is an integrated problem that uses concepts from Chapter 22. There are two L’s in the
problem: L in Chapter 22 refers to the screen distance from the slits, and the L we want here is the length of
the box. The wavelength of the neutron determined by the two-slit pattern is the same as the wavelength in the
confined box.

Visualize: The figure shows L, =2A4.

. L _ .

We also need Equation 22.6: y, :%. Also from the figure we see that y, =0.20x10"m. We are given
Lo =2.0m and d =15x10"°m.
Solve: Solve Equation 22.6 for A.

=D

mLscreen
15x10™ m)(0.20x10~ m
Lbox:2}':2 dym :2( )( )=1.5nm
mLscreen (2)(20 m)

Assess:  The two pieces of this problem fit together and make sense together.



25.43. Model: Electrons have a de Broglie wavelength given by A=Ah/p. Trapped electrons in the
confinement layer behave like a de Broglie wave in a closed-closed tube or like a string fixed at both ends.
Solve: (a) The four longest standing-wave wavelengths in the layer are A=2L, L, 2L, and +L . This follows

from the general relation for closed-closed tubes: A =2L/n. Thus, A= 10.0 nm, 5.00 nm, 3.33 nm, and 2.50 nm.
(b) We have

h h 6.63x107* Js 0.7278x107 m%/s
p=my=—=Dv=—-= =
2 mi  (9.11x107" kg) 2

Using the above four longest values of 1 we get the four smallest values of v. Thus,

_0.7278x1 07 m%/s

0T = 128x10" s
UX m

1

v, =1.46x10° m/s, v, =2.18x10° m/s, and v, =2.91x10° m/s .



25.44. Model: As light is diffracted by matter, matter can also be diffracted by light.
Solve: The de Broglie wavelength of the sodium atoms is
h h 6.63x107* Js

A=—m=—= =3.45x107"
p mv (3.84x107 kg)(50 m/s) e

The slit spacing of the “diffraction grating” is d =+ 4,,,. =+600 nm =300 nm. Using the diffraction grating equation with

m =1, we have
dsiné’:(l)i:sinézg:1.151><10’3 ~1.2x107

In the small-angle approximation, sinf = tan@ = y/L . We get

y=Lsin0=(1.0m)(1.151x107)=1.2 mm

25-1



