
25.1. Model: Balmer’s formula predicts a series of spectral lines in the hydrogen spectrum. 
Solve: Substituting into the formula for the Balmer series, 

2 2

91.18 nm
1 1
2 n

λ =
⎛ ⎞−⎜ ⎟
⎝ ⎠

 
2 2

91.18 nm 410.3 nm1 1
2 6

λ⇒ = =
−

 

where n = 3, 4, 5, 6, … and where we have used n = 6. Likewise for n = 8 and n = 10, 389.0 nm andλ =  
379.9 nm.λ =  

 



25.2. Model: Balmer’s formula predicts a series of spectral lines in the hydrogen spectrum. 
Solve: Balmer’s formula is 

2 2

91.18 nm
1 1
2 n

λ =
⎛ ⎞−⎜ ⎟
⎝ ⎠

  n = 3, 4, 5, 6, … 

( )2As , 1 0. Thus, 4 91.18 nm 364.7 nm.nn n λ →∞→∞ → = =  

 



25.3. Model: Balmer’s formula predicts a series of spectral lines in the hydrogen spectrum. 
Solve: Using Balmer’s formula, 

2

2 2

91.18 nm 1 1389.0 nm  0.2344 8
1 1 4
2

n
n

n

λ = = ⇒ − = ⇒ =
⎛ ⎞−⎜ ⎟
⎝ ⎠

 

 



25.4. Model: The angles of incidence for which diffraction from parallel planes occurs satisfy the Bragg 
condition. 
Solve: The Bragg condition is 2 cos ,md mθ λ=  where m = 1, 2, 3, … For first and second order diffraction, 

( )12 cos 1d θ λ=   ( )22 cos 2d θ λ=  

Dividing these two equations, 

( ) ( )1 12
2 1

1

cos 2 cos 2cos cos 2cos68 41
cos

θ θ θ
θ

− −= ⇒ = = ° = °  

 



25.5. Model: The angles of incidence for which diffraction from parallel planes occurs satisfy the Bragg 
condition. 
Solve: The Bragg condition is 2 cos .md mθ λ=  For m = 1 and for two different wavelengths, 

( )1 12 cos 1d θ λ=   ( )1 12 cos 1d θ λ′ ′=  

Dividing these two equations, 

( )11 1 1
1

1 1

cos cos 0.15 nm cos 0.4408 64
cos cos54 0.20 nm

θ λ θ θ
θ λ

−′ ′ ′
′= ⇒ = ⇒ = = °

°
 

 



25.6. Model: The angles corresponding to the various orders of diffraction satisfy the Bragg condition. 
Solve: The Bragg condition for m = 1 and m = 2 gives 

( ) ( )1 22 cos 1 2 cos 2d dθ λ θ λ= =  

Dividing these two equations, 

12
1 1

cos cos45 cos45cos cos 69.3
2 2 2
θθ θ −° °⎛ ⎞= = ⇒ = = °⎜ ⎟

⎝ ⎠
 

 



25.7. Model: The angles corresponding to the various diffraction orders satisfy the Bragg condition. 
Solve: The Bragg condition is 2 cos md mθ λ= , where m = 1, 2, 3, … The maximum possible value of m is the 
number of possible diffraction orders. The maximum value of cosθm is 1. Thus, 

( )
( )

2 0.180 nm22 4.2
0.085 nm

dd m mλ
λ

= ⇒ = = =  

We can observe up to the fourth diffraction order. 
 



25.8. Model: Use the photon model of light. 
Solve: The energy of the photon is 

( )
8

34 19
photon 9

3.0 10  m/s6.63 10  Js 3.98 10  J
500 10  m

cE hf h
λ

− −
−

⎛ ⎞×
= = = × = ×⎜ ⎟×⎝ ⎠

 

Assess: The energy of a single photon in the visible light region is extremely small. 
 



25.9. Model: Use the photon model of light. 
Solve: The energy of the single photon is 

( )( )34 8
19

photon 6

6.63 10  Js 3.0 10  m/s
1.99 10  J

1.0 10  m
cE hf h
λ

−
−

−

× ×⎛ ⎞= = = = ×⎜ ⎟ ×⎝ ⎠
 

( )( )23 19 5
mol A photon 6.023 10 1.99 10  J 1.2 10  JE N E −⇒ = = × × = ×  

Assess: Although the energy of a single photon is very small, a mole of photons has a significant amount of 
energy. 
 



25.10. Model: Use the photon model of light. 
Solve: The energy of a photon with wavelength λ1 is 1 1 1 .E hf hc λ= =  Similarly, 2 2 .E hc λ=  Since E2 is equal 
to 2E1, 

2 1

2hc hc
λ λ

= ⇒ 1
2

600 nm 300 nm
2 2
λλ = = =  

Assess: A photon with λ = 300 nm has twice the energy of a photon with λ = 600 nm. This is an expected 
result, because energy is inversely proportional to the wavelength. 
 



25.11. Model: Use the photon model of light. 
Solve: The energy of the x-ray photon is 

( )
8

34 16
9

3.0 10  m/s6.63 10  Js 2.0 10  J
1.0 10  m

cE hf h
λ

− −
−

⎛ ⎞×⎛ ⎞= = = × = ×⎜ ⎟⎜ ⎟ ×⎝ ⎠ ⎝ ⎠
 

Assess: This is a very small amount of energy, but it is larger than the energy of a photon in the visible 
wavelength region. 
 



25.12. Solve: Your mass is, say, m ≈ 70 kg and your velocity is 1 m/s. Thus, your momentum is p = mv ≈ (70 
kg)(1 m/s) = 70 kg m/s. Your de Broglie wavelength is 

34
366.63 10  Js 9 10  m

70 kg m/s
h
p

λ
−

−×
= = ≈ ×  

 



25.13. Solve: (a) The baseball’s momentum is p = mv = (0.200 kg)(30 m/s) = 6.0 kg m/s. The baseball’s de 
Broglie wavelength is 

34
346.63 10  Js 1.1 10  m

6.0 kg m/s
h
p

λ
−

−×
= = = ×  

(b) Using h p h mvλ = = , we have 

( )( )
34

23
9

6.63 10  Js 1.7 10  m/s
0.200 kg 0.20 10  m

hv
mλ

−
−

−

×
= = = ×

×
 

 



25.14. Visualize: We'll employ Equations 25.8 ( / )h pλ =  and 25.9 2( /2 )E p m=  to express the wavelength in 
terms of kinetic energy. 
Solve: First solve Equation 25.9 for : 2 .p p mE=  

( )( )
34

31 19

6.63 10 J s 1.0 nm
2 2 9.11 10  kg 2.4 10 J

h h
p mE

λ
−

− −

× ⋅
= = = =

× ×
 

Assess: The energy given is about 1.5 eV, which is a reasonable amount of energy. The resulting wavelength is a 
few to a few dozen times the size of an atom. 
 



25.15. Solve: (a) For an electron, the momentum ( )319.11 10  kgp mv v−= = × . The de Broglie wavelength is 

90.20 10  mh
p

λ −= = × ( )
34

9 6
31

6.63 10  Js0.20 10  m  3.6 10  m/s
9.11 10  kg

v
v

−
−

−

×
⇒ × = ⇒ = ×

×
 

(b) For a proton, ( )91.67 10  kg .p mv v−= = ×  The de Broglie wavelength is 

( )
34

9 9 3
27

6.63 10  Js0.20 10  m 0.20 10  m  2.0 10  m/s
1.67 10  kg

h v
p v

λ
−

− −
−

×
= = × ⇒ × = ⇒ = ×

×
 

 



25.16. Model: The momentum of a wave-like particle has discrete values given by ( )2np n h L=  where n =  
1, 2, 3, …. 
Solve: Because we want the smallest box and the momentum of the electron can not exceed a given value, n 
must be minimum. Thus, 

( )( )
34

1 31

6.63 10  Js 0.036 mm
2 2 2 9.11 10  kg 10 m/s
h hp mv L
L mv

−

−

×
= = ⇒ = = =

×
 

 



25.17. Model: A confined particle can have only discrete values of energy. 
Solve: From Equation 24.14, the energy of a confined electron is 

2
2

28n
hE n
mL

=   n = 1, 2, 3, 4, … 

The minimum energy is 

( )( )
2 34

10
1 2 31 18

1

6.63 10  Js 2.0 10  m 0.20 nm
8 8 8 9.11 10  kg 1.5 10  J

h hE L
mL mE

−
−

− −

×
= ⇒ = = = × =

× ×
 

 



25.18. Model: Model the 5.0-fm-diameter nucleus as a box of length L = 5.0 fm. 
Solve: The proton’s energy is restricted to the discrete values 

( )
( )( )

( )
234 22

2 12 2
22 27 15

6.63 10  Js
1.316 10  J

8 8 1.67 10  kg 5.0 10  m
n

nhE n n
mL

−
−

− −

×
= = = ×

× ×
 

where n = 1, 2, 3, … For n = 1, 12
1 1.3 10  JE −= × , for n = 2, ( )12 12

2 1.316 10  J 4 5.3 10  JE − −= × = × , and for n = 3, 
11

3 19 1.2 10  JE E −= = × . 

 



25.19.  Model: The generalized formula of Balmer predicts a series of spectral lines in the hydrogen 
spectrum. 
Solve: (a) The generalized formula of Balmer 

2 2

91.18 m
1 1
m n

λ =
⎛ ⎞−⎜ ⎟
⎝ ⎠

 

with m = 1 and n > 1 accounts for a series of spectral lines. This series is called the Lyman series and the first 
two members are 

1 2

2 2

91.18 m 91.18 nm121.6 nm 102.6 nm
1 11 1
2 3

λ λ= = = =
⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

For n = 4 and n = 5, 3 497.3 nm and 95.0 nmλ λ= = . 

(b) The Lyman series converges when n→∞ . This means 21 0 and 91.18 nm.n λ→ →  
(c) For a diffraction grating, the condition for bright (constructive interference) fringes is sin ,pd pθ λ=  where p = 
1, 2, 3, … For first-order diffraction, this equation simplifies to sin .d θ λ=  For the first and second members of 
the Lyman series, the above condition is 1 1 2 2sin 121.6 nm and sin 102.6 nm.d dθ λ θ λ= = = =  Dividing these two 
equations yields 

( )2 1 1
102.6 nmsin sin 0.84375 sin
121.6 nm

θ θ θ⎛ ⎞= =⎜ ⎟
⎝ ⎠

 

The distance from the center to the first maximum is tan .y L θ=  Thus, 

( ) ( )1
1 1 2 2

0.376 mtan 14.072 sin 0.84375 sin 14.072 11.84
1.5 m

y
L

θ θ θ θ= = ⇒ = °⇒ = ° ⇒ = °  

Applying the position formula once again, 

( ) ( )2 2tan 1.5 m tan 11.84 0.314 m  31.4 cmy L θ= = ° = =  

 



25.20.  Model: The generalized formula of Balmer predicts a series of spectral lines in the hydrogen 
spectrum. 
Solve: (a) The generalized formula of Balmer 

2 2

91.18 m
1 1
m n

λ =
⎛ ⎞−⎜ ⎟
⎝ ⎠

 

with m = 3, and n > 3 accounts for a series of spectral lines. This series is called the Paschen series and the 
wavelengths are 

2

2

2 2

91.18 nm 820.62 
1 1 9
3

n
n

n

λ = =
⎛ ⎞ −−⎜ ⎟
⎝ ⎠

 

The first four members are 1 2 3 41876 nm, 1282 nm, 1094 nm, and 1005 nmλ λ λ λ= = = =  
(b) The Paschen series converges when .n→∞  This means 

( )22 1
3

1 91.18 nm0 820.6 nm
n

λ→ ⇒ → =  

(c) For a diffraction grating, the condition for bright (constructive interference) fringes is sin ,pd pθ λ=  where p = 
1, 2, 3, … For first-order diffraction, this equation simplifies to sind θ λ= . For the first and second members of 
the Paschen series, the condition is 1 1sind θ λ=  and 2 2sind θ λ= . Dividing these two equations yields 

( )2
2 1 1 1

1

1282 nmsin sin sin 0.6834 sin
1876 nm

λθ θ θ θ
λ

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

The distance from the center to the first maximum is tany L θ= . Thus, 

1
1

0.607 mtan 0.4047
1.5 m

y
L

θ = = = ⇒ 1 22.03θ = ° ⇒ ( )2 2sin 0.6834 sin 22.03 14.85θ θ= °⇒ = °  

Applying the position formula once again, 
( )2 2tan 1.5 m tan14.85 0.398 m 39.8 cmy L θ= = ° = =  



25.21. Model: Use the photon model of light. 
Solve: (a) The wavelength is calculated as follows: 

( )( )34 8
12

gamma 13

6.63 10  Js 3.0 10  m/s
2.0 10  m

1.0 10  J
cE hf h λ
λ

−
−

−

× ×⎛ ⎞= = ⇒ = = ×⎜ ⎟ ×⎝ ⎠
 

(b) The energy of a visible-light photon of wavelength 500 nm is 

( )( )34 8
19

visible 9

6.63 10  Js 3.0 10  m/s
3.978 10  J

500 10  m
cE h
λ

−
−

−

× ×⎛ ⎞= = = ×⎜ ⎟ ×⎝ ⎠
 

The number of photons n such that gamma visibleE nE=  is 

13
gamma 5

19
visible

1.0 10  J 2.5 10
3.978 10  J

E
n

E

−

−

×
= = = ×

×
 

 



25.22. Model: Use the photon model. 
Solve: The energy of a 1000 kHz photon is 

( )( )34 3 28
photon 6.63 10  Js 1000 10  Hz 6.63 10  JE hf − −= = × × = ×  

The energy transmitted each second is 320 10  J.×  The number of photons transmitted each second is 
3 2820 10  J/6.63 10  J−× × = 313.0 10 .×  

 



25.23. Model: Use the photon model for the laser light. 
Solve: (a) The energy is 

( )
8

34 19
photon 9

3 10  m/s6.63 10  Js 3.1 10  J
633 10  m

cE hf h
λ

− −
−

⎛ ⎞×⎛ ⎞= = = × = ×⎜ ⎟⎜ ⎟ ×⎝ ⎠ ⎝ ⎠
 

(b) The energy emitted each second is 31.0 10  J.−×  The number of photons emitted each second is 
3 191.0 10  J/3.14 10  J− −× × =  153.2 10 .×  

 



25.24. Model: Use the photon model for the incandescent light. 
Solve: The photons travel in all directions. At a distance of r from the light bulb, the photons spread over a 
sphere of surface area 4πr2. The number of photons per second per unit area at the location of your retina is 

( )
18 1

9 1 2
23

3 10  s 2.387 10  s  m
4 10 10  mπ

−
− −×

= ×
×

 

The number of photons that enter your pupil per second is 

( )29 1 2 3 4 12.387 10  s m 3.5 10  m 9.2 10  sπ− − − −× × × = ×  

 



25.25. Model: Use the photon model of light and the Bragg condition for diffraction. 
Solve: The Bragg condition for the reflection of x-rays from a crystal is 2 cos .md mθ λ=  To determine the 
angles of incidence θm, we need to first calculate λ. The wavelength is related to the photon’s energy as 

.E hc λ=  Thus, 

( )( )34 8
10

15

6.63 10  Js 3.0 10  m/s
1.326 10  m

1.50 10  J
hc
E

λ
−

−
−

× ×
= = = ×

×
 

From the Bragg condition, 

( )
( ) ( ) ( )

10
1 1 1 1

19

1.326 10  m
cos cos cos 0.3157 cos 0.3157 71.6

2 2 0.21 10  mm

mm m
d
λθ θ

−
− − − −

−

⎡ ⎤×⎛ ⎞ ⎢ ⎥= = = ⇒ = = °⎜ ⎟ ×⎝ ⎠ ⎢ ⎥⎣ ⎦
 

Likewise, ( )1
2 cos 0.3157 2 50.8θ −= × = °  and 3 18.7 .θ = °  Note that ( )1

4 cos 0.3157 4θ −= ×  is not allowed because 
the cosθ cannot be larger than 1. Thus, the x-rays will be diffracted at angles of incidence equal to 18.7 ,  50.8 ,° °  
and 71.6 .°  
 



25.26. Model: The angles for which diffraction from parallel planes occurs satisfy the Bragg condition. 
Solve:  We cannot assume that these are the first and second order diffractions. The Bragg condition is 
2 cos .md mθ λ=  We have 

( )2 cos45.6 2 cos21.0 1d m d mλ λ° = ° = +  

Notice that θm decreases as m increases, so 21.6°  corresponds to the larger value of m. Dividing these two 
equations, 

cos45.6 0.7494 3
cos21.0 1

m m
m

°
= = ⇒ =

° +
 

Thus these are the third and fourth order diffractions. Substituting into the Bragg condition, 
9

103 0.0700 10  m 1.50 10  m  0.150 nm
2cos45.6

d
−

−× ×
= = × =

°
 

 



25.27. Model: The x-ray diffraction angles satisfy the Bragg condition. 
Solve: (a) The Bragg condition ( 2 cos md mθ λ= ) for normal incidence, θm = 0 ,°  simplifies to 2d = mλ. For a 
thin film of a material on a substrate where nair < nmaterial < nsubstrate, constructive interference between the two 
reflected waves occurs when 2d = mλ, where λ is the wavelength inside the material. 
(b) From a thin film with a period of 1.2 nm, that is, with d = 1.2 nm, the two longest x-ray wavelengths that will 
reflect at normal incidence are 

1
2
1
dλ =   2

2
2
dλ =  

This means that ( )1 2 1.2 nm 2.4 nmλ = =  and 2 1.2 nm.λ =  

 



25.28. Solve: A small fraction of the light wave of an appropriate wavelength is reflected from each little 
“bump” in the refractive index. These little bumps act like the atomic planes in a crystal. The light will be 
strongly reflected (and hence blocked in transmission) if it satisfies the Bragg condition at normal incidence 
(θ = 0). 

glass
glass

2 md m
n

λλ= =
( )( )6

glass 2 0.45 10  m 1.502
1.35

1
dn
m

λ
−×

⇒ = = =  μm 

 



25.29. Model: Particles have a de Broglie wavelength given by .h pλ =  The wave nature of the particles 
causes an interference pattern in a double-slit apparatus. 
Solve: (a) Since the speed of the neutron and electron are the same, the neutron’s momentum is 

n n n
n n n e n e e e

e e e

m m mp m v m v m v p
m m m

= = = =  

where mn and me are the neutron’s and electron’s masses. The de Broglie wavelength for the neutron is 

e e
n e

n e n n

h h p m
p p p m

λ λ= = =  

From Section 22.2 on double-slit interference, the fringe spacing is / .y L dλΔ =  Thus, the fringe spacing for the 
electron and neutron are related by 

( )
31

3 7n e
n e e 27

e n

9.11 10  kg 1.5 10  m 8.18 10  m 0.818 m
1.67 10  kg

my y y
m

λ μ
λ

−
− −

−

⎛ ⎞×
Δ = Δ = Δ = × = × =⎜ ⎟×⎝ ⎠

 

(b) If the fringe spacing has to be the same for the neutrons and the electrons, 

( )
31

6 3e
e n e n n e 27

e e n n n

9.11 10  kg2.0 10  m/s 1.1 10  m/s
1.67 10  kg

h h my y v v
m v m v m

λ λ
−

−

⎛ ⎞×
Δ = Δ ⇒ = ⇒ = ⇒ = = × = ×⎜ ⎟×⎝ ⎠

 

 



25.30. Model: Electrons have a de Broglie wavelength given by .h pλ =  The wave nature of the electrons 
causes a diffraction pattern. 
Solve: The width of the central maximum of a single-slit diffraction pattern is given by Equation 22.22: 

( )( )
( )( )( )

34
4

6 31 6

2 1.0 m 6.63 10  Js2 2 2 9.7 10  m 0.97 mm
1.0 10  m 9.11 10  kg 1.5 10  m/s

L Lh Lhw
a ap amv
λ −

−
− −

×
= = = = = × =

× × ×
 

 



25.31. Model: Neutrons have a de Broglie wavelength given by .h pλ =  The wave nature of the neutrons 
causes a double-slit interference pattern. 
Solve: Measurements show that the spacing between the m = 1 and m = –1 peaks is 1.4 times as long as the 
length of the reference bar, which gives the real fringe separation Δy = 70 μm. Similarly, the spacing between the 
m = 2 and m = –2 is 2.8 times as long as the length of the reference bar and yields Δy = 70 μm. 

The fringe separation in a double-slit experiment is .y L dλΔ =  Hence, 

( )( )
( )( )( )

34

6 27 3

6.63 10  Js 3.0 m
170 m/s

70 10  m 1.67 10  kg 0.10 10  m
y d h h y d hLv
L p mv L y md

λ
−

− − −

×Δ Δ
= ⇒ = = ⇒ = = =

Δ × × ×
 

 



25.32. Model: Electrons have a de Broglie wavelength given by .h pλ =  
Visualize: Please refer to Figure 25.11. Notice that a scattering angle 60φ = °  corresponds to an angle of 
incidence 30 .θ = °  
Solve: Equation 25.6 describes the Davisson-Germer experiment: ( )sin 2 .mD mθ λ=  Assuming m = 1, this 

equation simplifies to sin 2 .D θ λ=  Using h mvλ = , we have 

( )( ) ( )
34

10
31 6

6.63 10  Js 1.95 10  m 0.195 nm
sin 2 9.11 10  kg 4.30 10  m/s sin 60
hD

mv θ

−
−

−

×
= = = × =

× × °
 



25.33. Model: A confined particle can have only discrete values of energy. 
Solve: (a) Equation 25.14 simplifies to 

( )
( )( )

( )
2342

2 19 2
22 31 9

6.63 10  Js
1.231 10  J

8 8 9.11 10  kg 0.70 10  m
n

hE n n
mL

−
−

− −

×
= = = ×

× ×
 

Thus, ( )( )19 2 19
1 1.231 10 J 1 1.2 10 J,E − −= × = × ( )( )19 2 19

2 1.231 10 J 2 4.9 10 J,E − −= × = ×  and 18
3 1.1 10 J.E −= ×  

(b) The energy is 19 19 19
2 1 4.9 10  J 1.2 10  J  3.7 10  J.E E − − −− = × − × = ×  

(c) Because energy is conserved, the photon will carry an energy of 19
2 1 3.69 10  JE E −− = × . That is, 

( )( )34 8

2 1 photon 19
2 1

6.63 10  Js 3.0 10  m/s
540 nm

3.69 10  J
hc hcE E E hf

E E
λ

λ

−

−

× ×
− = = = ⇒ = = =

− ×
 



25.34. Model: A particle confined in a one-dimensional box has discrete energy levels. 
Solve: (a) Equation 24.14 for the n = 1 state is 

( )
( )( )

2342
64

22 3

6.63 10  Js
5.5 10  J

8 8 10 10  kg 0.10 mn
hE
mL

−
−

−

×
= = = ×

×
 

The minimum energy of the Ping-Pong ball is 64
1 5.5 10  J.E −= ×  

(b) The speed is calculated as follows: 

( ) ( )64
64 2 3 2 311 1

1 2 2 3

2 5.50 10  J
5.50 10 J  10 10  kg 3.3 10  m/s

10 10  kg
E mv v v

−
− − −

−

×
= × = = × ⇒ = = ×

×
 

 



25.35. Model: A particle confined in a one-dimensional box has discrete energy levels. 
Solve: Using Equation 24.14 for n = 1 and 2, 

( )
2

2 2
2 1 2 2 1

8
hE E
mL

− = −
( )
( ) ( )

234 37 2
19

231 2

6.63 10  Js 1.809 10  Jm1.0 10  J  3
8 9.11 10  kg LL

− −
−

−

× ×
⇒ × = =

×
 

37 2
9

19

1.809 10  Jm 1.3 10  m  1.3 nm
1.0 10  J

L
−

−
−

×
⇒ = = × =

×
 

 



25.36. Visualize: From the figure we see that the wavelength is 2.0 nm.  We'll employ Equations 25.8 
( / )h pλ =  and 25.9 2( /2 )E p m=  to express the kinetic energy in terms of wavelength. 
Solve: 

( ) ( )
( )

22 342
20

31

6.63 10 J s 2.0 nm
6.0 10 J

2 2 2 9.11 10 Kg
hpE

m m
λ −

−
−

× ⋅
= = = = ×

×
 

Assess: This energy is a little less than one eV, which is reasonable. 
 



25.37. Visualize: The strategy is to take ratios to find n  and then plug it back in to find .L  
Solve: 

2
2

2 132
1

2 2 13
2

2

( 1) ( 1) 6.4 10 J8
( ) 3.6 10 J( )

8

n

n

h nE nmL
hE nn
mL

−
+

−

+ + ×
= = =

×
 

Cancel 1310 J−×  and take square roots. 

1 6.4 4                3
3.6 3

n n
n
+

= = ⇒ =  

So 13
3 3.6 10 J.E −= ×  Now solve for .L  

( )( )
( )( )

342 2

27 13

6.63 10  J s 3
29 fm

8 8 8 1.67 10  kg 3.6 10  Jn n

h n hnL
mE mE

−

− −

× ⋅
= = = =

× ×
 

Assess: This is not an atomic-sized box, but a nuclear-sized box; that’s OK for neutrons. 
 



25.38. Model: The allowed energies of a particle of mass m in a two-dimensional square box of side L are 

( )
2

2 2
28nm

hE n m
mL

= +  

Solve: (a) The minimum energy for a particle is for n = m = 1: 

( )
2 2

2 2
min 11 2 21 1

8 4
h hE E
mL mL

= = + =  

(b) The five lowest allowed energies are min ,E  5
min2 E (for n = 1, m = 2 and n = 2, m = 1), min4E  (for n = 2, m = 2), 

min5E  (for n = 1, m = 3 and n = 3, m = 1), and 13
min2 E  (for n = 2, m = 3 and n = 3, m = 2). 

 



25.39. Model: A particle confined in a one-dimensional box of length L has the discrete energy levels given 
by Equation 24.14. 
Solve: (a) Since the energy is entirely kinetic energy, 

2 2
2 21

22 1,  2,  3,  
8 2 2n n n
h p hE n mv v n n
mL m mL

= = = ⇒ = = …  

(b) The first allowed velocity is 

( )( )
34

6
1 31 9

6.63 10 Js 1.82 10  m/s
2 9.11 10  kg 0.20 10  m

v
−

− −

×
= = ×

× ×
 

For n = 2 and n = 3, v2 = 3.64 × 106 m/s and v3 = 5.46 × 106 m/s. 
 



25.40.  Model: Sets of parallel planes in a crystal diffract x-rays. 
Visualize: Please refer to Figure CP25.40. 
Solve: The Bragg diffraction condition is 2 cos ,md mθ λ=  where d is the interplanar separation. Because 
smaller m values correspond to higher angles of incidence, the diffraction angle of 71.3° in the x-ray intensity 
plot must correspond to m = 1. This means 

( ) ( )
9

9 100.10 10  m2 cos71.3 1 0.10 10  m 1.56 10  m
2 cos71.3

d d
−

− −×
° = × ⇒ = = ×

°
 

The cosines of the three angles in the x-ray intensity plot are cos71.3 0.321,° =  cos50.1 0.642,° =  and 
cos15.8 0.962.° =  These are in the ratio 1 : 2 : 3, which tells us that these are the m = 1, 2, and 3 diffraction peaks 
from a single set of planes with 0.156d =  nm. 

We can see from the figure that the atomic spacing D of this crystal is related to the interplanar separation d 
by 

0.156 nm 0.18 nm
sin 60 sin60
dD = = =

° °
 

 



25.41.  Model: Sets of parallel planes in a crystal diffract x-rays. 
Visualize: Please refer to Figure 25.7. 
Solve: (a) The Bragg diffraction condition is 2 cos .md mθ λ=  The plane spacing is dA = 0.20 nm and the x-ray 
wavelength is 0.12λ = nm. Thus 

( )
( ) ( ) ( )

9
1

A19
A

0.12 10  m
cos 0.3 cos 0.3 72.5

2 2 0.20 10  mm

mm m
d
λθ θ

−
−

−

×
= = = ⇒ = = °

×
 

Likewise for m = 2 and m = 3, ( )1
A2 cos 0.6 53.1θ −= = °  and ( )1

A3 cos 0.9 25.8 .θ −= = °  These three angles for 
the x-ray diffraction peaks match the peaks shown in Figure 25.7c. 
(b) The new interplaner spacing is B A 2 0.141d d= = nm (see Figure 25.7b). The Bragg condition for the tilted 
atomic planes becomes 

B

cos 0.4243
2m
m m
d
λθ = =  

For m = 1, ( )1
B1 cos 0.4243 64.9 .θ −= = °  For m = 2, ( )1

B2 cos 0.8486 31.9 .θ −= = °  

(c) The crystal is already tipped by 45°  to get the tilted planes (see Figure 25.7b). So, for m = 1, 
1 64.9 45θ = °− ° =  19.9 .° 64.9 45 109.9θ = °+ ° = °  also, but we can’t see beyond 90 .°  For m = 2, 

2 31.9 45 76.9 .θ = °+ ° = °  These two angles match the angles in the diffraction peaks of the tilted planes. 

 



25.42. Model: This is an integrated problem that uses concepts from Chapter 22. There are two L’s in the 
problem: L  in Chapter 22 refers to the screen distance from the slits, and the L  we want here is the length of 
the box. The wavelength of the neutron determined by the two-slit pattern is the same as the wavelength in the 
confined box. 
Visualize: The figure shows box 2 .L λ=  

We also need Equation 22.6: screen .m
m Ly
d

λ
= Also from the figure we see that 3

2 0.20 10 m.y −= ×  We are given 

screen 2.0 mL =  and 615 10 m.d −= ×  
Solve: Solve Equation 22.6 for .λ  

screen

mdy
mL

λ =  

( )( )
( )( )

6 3

box
screen

15 10  m 0.20 10  m
2 2 2 1.5 nm

2 2.0 m
mdyL

mL
λ

− −× ×
= = = =  

Assess: The two pieces of this problem fit together and make sense together. 
 



25.43.  Model: Electrons have a de Broglie wavelength given by .h pλ =  Trapped electrons in the 
confinement layer behave like a de Broglie wave in a closed-closed tube or like a string fixed at both ends. 
Solve: (a) The four longest standing-wave wavelengths in the layer are 2Lλ = , L, 2

3 L , and 1
2 L . This follows 

from the general relation for closed-closed tubes: 2 / .L nλ =  Thus, λ = 10.0 nm, 5.00 nm, 3.33 nm, and 2.50 nm. 
(b) We have 

( )
34 3 2

31

6.63 10  Js 0.7278 10  m /s
9.11 10  kg

h hp mv v
mλ λ λλ

− −

−

× ×
= = ⇒ = = =

×
 

Using the above four longest values of λ we get the four smallest values of v. Thus, 
3 2

4
1 9

0.7278 10  m /s 7.28 10  m/s
10.0 10  m

v
−

−

×
= = ×

×
 

5
2 1.46 10  m/sv = × , 5

3 2.18 10  m/sv = × , and 5
4 2.91 10  m/sv = × . 
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25.44. Model: As light is diffracted by matter, matter can also be diffracted by light. 
Solve: The de Broglie wavelength of the sodium atoms is 

( )( )
34

10
26

6.63 10  Js 3.45 10  m
3.84 10  kg 50 m/s

h h
p mv

λ
−

−
−

×
= = = = ×

×
 

The slit spacing of the “diffraction grating” is 1 1
laser2 2 600 nm 300 nm.d λ= = =  Using the diffraction grating equation with 

m = 1, we have 

( ) 3 3sin 1 sin 1.151 10 1.2 10d
d
λθ λ θ − −= ⇒ = = × ≈ ×  

In the small-angle approximation, sin tan y Lθ θ≅ = . We get 

( )( )3sin 1.0 m 1.151 10 1.2 mmy L θ −= = × =  

 


