25.1. Model: Balmer's formula predicts a series of spectral lines in the hydrogen spectrum. **Solve:** Substituting into the formula for the Balmer series,

$$\lambda = \frac{91.18 \text{ nm}}{\left(\frac{1}{2^2} - \frac{1}{n^2}\right)} \implies \lambda = \frac{91.18 \text{ nm}}{\frac{1}{2^2} - \frac{1}{6^2}} = 410.3 \text{ nm}$$

where n = 3, 4, 5, 6, ... and where we have used n = 6. Likewise for n = 8 and n = 10, $\lambda = 389.0$ nm and $\lambda = 379.9$ nm.

25.2. Model: Balmer's formula predicts a series of spectral lines in the hydrogen spectrum. Solve: Balmer's formula is

$$\lambda = \frac{91.18 \text{ nm}}{\left(\frac{1}{2^2} - \frac{1}{n^2}\right)} \qquad n = 3, 4, 5, 6, \dots$$

As $n \to \infty$, $1/n^2 \to 0$. Thus, $\lambda_{n\to\infty} = 4(91.18 \text{ nm}) = 364.7 \text{ nm}.$

25.3. Model: Balmer's formula predicts a series of spectral lines in the hydrogen spectrum. Solve: Using Balmer's formula,

$$\lambda = 389.0 \text{ nm} = \frac{91.18 \text{ nm}}{\left(\frac{1}{2^2} - \frac{1}{n^2}\right)} \Rightarrow \frac{1}{4} - \frac{1}{n^2} = 0.2344 \Rightarrow n = 8$$

25.4. Model: The angles of incidence for which diffraction from parallel planes occurs satisfy the Bragg condition.

Solve: The Bragg condition is $2d \cos \theta_m = m\lambda$, where m = 1, 2, 3, ... For first and second order diffraction,

$$2d\cos\theta_1 = (1)\lambda$$
 $2d\cos\theta_2 = (2)\lambda$

Dividing these two equations,

$$\frac{\cos\theta_2}{\cos\theta_1} = 2 \Longrightarrow \theta_2 = \cos^{-1}(2\cos\theta_1) = \cos^{-1}(2\cos68^\circ) = 41^\circ$$

25.5. Model: The angles of incidence for which diffraction from parallel planes occurs satisfy the Bragg condition.

Solve: The Bragg condition is $2d\cos\theta_m = m\lambda$. For m = 1 and for two different wavelengths,

$$2d\cos\theta_1 = (1)\lambda_1 \qquad 2d\cos\theta_1' = (1)\lambda_1'$$

Dividing these two equations,

$$\frac{\cos\theta_1'}{\cos\theta_1} = \frac{\lambda_1'}{\lambda_1} \Longrightarrow \frac{\cos\theta_1'}{\cos54^\circ} = \frac{0.15 \text{ nm}}{0.20 \text{ nm}} \Longrightarrow \theta_1' = \cos^{-1}(0.4408) = 64^\circ$$

25.6. Model: The angles corresponding to the various orders of diffraction satisfy the Bragg condition. Solve: The Bragg condition for m = 1 and m = 2 gives

$$2d\cos\theta_1 = (1)\lambda$$
 $2d\cos\theta_2 = (2)\lambda$

Dividing these two equations,

$$\cos\theta_1 = \frac{\cos\theta_2}{2} = \frac{\cos 45^\circ}{2} \Longrightarrow \theta_1 = \cos^{-1}\left(\frac{\cos 45^\circ}{2}\right) = 69.3^\circ$$

25.7. Model: The angles corresponding to the various diffraction orders satisfy the Bragg condition. Solve: The Bragg condition is $2d \cos \theta_m = m\lambda$, where m = 1, 2, 3, ... The maximum possible value of *m* is the number of possible diffraction orders. The maximum value of $\cos \theta_m$ is 1. Thus,

$$2d = m\lambda \Rightarrow m = \frac{2d}{\lambda} = \frac{2(0.180 \text{ nm})}{(0.085 \text{ nm})} = 4.2$$

We can observe up to the fourth diffraction order.

25.8. Model: Use the photon model of light. **Solve:** The energy of the photon is

$$E_{\text{photon}} = hf = h\frac{c}{\lambda} = (6.63 \times 10^{-34} \text{ Js}) \left(\frac{3.0 \times 10^8 \text{ m/s}}{500 \times 10^{-9} \text{ m}}\right) = 3.98 \times 10^{-19} \text{ J}$$

Assess: The energy of a single photon in the visible light region is extremely small.

25.9. Model: Use the photon model of light. **Solve:** The energy of the single photon is

$$E_{\text{photon}} = hf = h\left(\frac{c}{\lambda}\right) = \frac{\left(6.63 \times 10^{-34} \text{ Js}\right)\left(3.0 \times 10^8 \text{ m/s}\right)}{1.0 \times 10^{-6} \text{ m}} = 1.99 \times 10^{-19} \text{ J}$$
$$\Rightarrow E_{\text{mol}} = N_{\text{A}}E_{\text{photon}} = \left(6.023 \times 10^{23}\right)\left(1.99 \times 10^{-19} \text{ J}\right) = 1.2 \times 10^5 \text{ J}$$

Assess: Although the energy of a single photon is very small, a mole of photons has a significant amount of energy.

25.10. Model: Use the photon model of light.

Solve: The energy of a photon with wavelength λ_1 is $E_1 = hf_1 = hc/\lambda_1$. Similarly, $E_2 = hc/\lambda_2$. Since E_2 is equal to $2E_1$,

$$\frac{hc}{\lambda_2} = 2\frac{hc}{\lambda_1} \implies \lambda_2 = \frac{\lambda_1}{2} = \frac{600 \text{ nm}}{2} = 300 \text{ nm}$$

Assess: A photon with $\lambda = 300$ nm has twice the energy of a photon with $\lambda = 600$ nm. This is an expected result, because energy is inversely proportional to the wavelength.

25.11. Model: Use the photon model of light. **Solve:** The energy of the x-ray photon is

$$E = hf = h\left(\frac{c}{\lambda}\right) = \left(6.63 \times 10^{-34} \text{ Js}\right) \left(\frac{3.0 \times 10^8 \text{ m/s}}{1.0 \times 10^{-9} \text{ m}}\right) = 2.0 \times 10^{-16} \text{ J}$$

Assess: This is a very small amount of energy, but it is larger than the energy of a photon in the visible wavelength region.

25.12. Solve: Your mass is, say, $m \approx 70$ kg and your velocity is 1 m/s. Thus, your momentum is $p = mv \approx (70 \text{ kg})(1 \text{ m/s}) = 70 \text{ kg m/s}$. Your de Broglie wavelength is

$$\lambda = \frac{h}{p} = \frac{6.63 \times 10^{-34} \text{ Js}}{70 \text{ kg m/s}} \approx 9 \times 10^{-36} \text{ m}$$

25.13. Solve: (a) The baseball's momentum is p = mv = (0.200 kg)(30 m/s) = 6.0 kg m/s. The baseball's de Broglie wavelength is

$$\lambda = \frac{h}{p} = \frac{6.63 \times 10^{-34} \text{ Js}}{6.0 \text{ kg m/s}} = 1.1 \times 10^{-34} \text{ m}$$

(b) Using $\lambda = h/p = h/mv$, we have

$$v = \frac{h}{m\lambda} = \frac{6.63 \times 10^{-34} \text{ Js}}{(0.200 \text{ kg})(0.20 \times 10^{-9} \text{ m})} = 1.7 \times 10^{-23} \text{ m/s}$$

25.14. Visualize: We'll employ Equations 25.8 $(\lambda = h/p)$ and 25.9 $(E = p^2/2m)$ to express the wavelength in terms of kinetic energy.

Solve: First solve Equation 25.9 for $p: p = \sqrt{2mE}$.

$$\lambda = \frac{h}{p} = \frac{h}{\sqrt{2mE}} = \frac{6.63 \times 10^{-34} \,\mathrm{J} \cdot \mathrm{s}}{\sqrt{2(9.11 \times 10^{-31} \,\mathrm{kg})(2.4 \times 10^{-19} \,\mathrm{J})}} = 1.0 \,\mathrm{nm}$$

Assess: The energy given is about 1.5 eV, which is a reasonable amount of energy. The resulting wavelength is a few to a few dozen times the size of an atom.

25.15. Solve: (a) For an electron, the momentum $p = mv = (9.11 \times 10^{-31} \text{ kg})v$. The de Broglie wavelength is

$$\lambda = \frac{h}{p} = 0.20 \times 10^{-9} \text{ m} \Rightarrow 0.20 \times 10^{-9} \text{ m} = \frac{6.63 \times 10^{-34} \text{ Js}}{(9.11 \times 10^{-31} \text{ kg})v} \Rightarrow v = 3.6 \times 10^{6} \text{ m/s}$$

(**b**) For a proton, $p = mv = (1.67 \times 10^{-9} \text{ kg})v$. The de Broglie wavelength is

$$\lambda = \frac{h}{p} = 0.20 \times 10^{-9} \text{ m} \Rightarrow 0.20 \times 10^{-9} \text{ m} = \frac{6.63 \times 10^{-34} \text{ Js}}{(1.67 \times 10^{-27} \text{ kg})v} \Rightarrow v = 2.0 \times 10^{3} \text{ m/s}$$

25.16. Model: The momentum of a wave-like particle has discrete values given by $p_n = n(h/2L)$ where n = 1, 2, 3, ..., n

1, 2, 3, Solve: Because we want the smallest box and the momentum of the electron can not exceed a given value, n must be minimum. Thus,

$$p_1 = mv = \frac{h}{2L} \Longrightarrow L = \frac{h}{2mv} = \frac{6.63 \times 10^{-34} \text{ Js}}{2(9.11 \times 10^{-31} \text{ kg})(10 \text{ m/s})} = 0.036 \text{ mm}$$

25.17. Model: A confined particle can have only discrete values of energy.Solve: From Equation 24.14, the energy of a confined electron is

$$E_n = \frac{h^2}{8mL^2}n^2$$
 $n = 1, 2, 3, 4, ...$

The minimum energy is

$$E_1 = \frac{h^2}{8mL^2} \Rightarrow L = \frac{h}{\sqrt{8mE_1}} = \frac{6.63 \times 10^{-34} \text{ Js}}{\sqrt{8(9.11 \times 10^{-31} \text{ kg})(1.5 \times 10^{-18} \text{ J})}} = 2.0 \times 10^{-10} \text{ m} = 0.20 \text{ nm}$$

25.18. Model: Model the 5.0-fm-diameter nucleus as a box of length L = 5.0 fm. Solve: The proton's energy is restricted to the discrete values

$$E_n = \frac{h^2}{8mL^2}n^2 = \frac{\left(6.63 \times 10^{-34} \text{ Js}\right)^2 n^2}{8\left(1.67 \times 10^{-27} \text{ kg}\right)\left(5.0 \times 10^{-15} \text{ m}\right)^2} = \left(1.316 \times 10^{-12} \text{ J}\right)n^2$$

where n = 1, 2, 3, ... For n = 1, $E_1 = 1.3 \times 10^{-12}$ J, for n = 2, $E_2 = (1.316 \times 10^{-12} \text{ J})4 = 5.3 \times 10^{-12}$ J, and for n = 3, $E_3 = 9E_1 = 1.2 \times 10^{-11}$ J.

25.19. Model: The generalized formula of Balmer predicts a series of spectral lines in the hydrogen spectrum.

Solve: (a) The generalized formula of Balmer

$$\lambda = \frac{91.18 \text{ m}}{\left(\frac{1}{m^2} - \frac{1}{n^2}\right)}$$

with m = 1 and n > 1 accounts for a series of spectral lines. This series is called the Lyman series and the first two members are

$$\lambda_1 = \frac{91.18 \text{ m}}{\left(1 - \frac{1}{2^2}\right)} = 121.6 \text{ nm}$$
 $\lambda_2 = \frac{91.18 \text{ nm}}{\left(1 - \frac{1}{3^2}\right)} = 102.6 \text{ nm}$

For n = 4 and n = 5, $\lambda_3 = 97.3$ nm and $\lambda_4 = 95.0$ nm.

(b) The Lyman series converges when $n \to \infty$. This means $1/n^2 \to 0$ and $\lambda \to 91.18$ nm.

(c) For a diffraction grating, the condition for bright (constructive interference) fringes is $d \sin \theta_p = p\lambda$, where p = 1, 2, 3, ... For first-order diffraction, this equation simplifies to $d \sin \theta = \lambda$. For the first and second members of the Lyman series, the above condition is $d \sin \theta_1 = \lambda_1 = 121.6$ nm and $d \sin \theta_2 = \lambda_2 = 102.6$ nm. Dividing these two equations yields

$$\sin\theta_2 = \left(\frac{102.6 \text{ nm}}{121.6 \text{ nm}}\right)\sin\theta_1 = (0.84375)\sin\theta_1$$

The distance from the center to the first maximum is $y = L \tan \theta$. Thus,

$$\tan \theta_1 = \frac{y_1}{L} = \frac{0.376 \text{ m}}{1.5 \text{ m}} \Longrightarrow \theta_1 = 14.072^\circ \Longrightarrow \sin \theta_2 = (0.84375)\sin(14.072^\circ) \Longrightarrow \theta_2 = 11.84^\circ$$

Applying the position formula once again,

$$y_2 = L \tan \theta_2 = (1.5 \text{ m}) \tan (11.84^\circ) = 0.314 \text{ m} = 31.4 \text{ cm}$$

25.20. Model: The generalized formula of Balmer predicts a series of spectral lines in the hydrogen spectrum.

Solve: (a) The generalized formula of Balmer

$$\lambda = \frac{91.18 \text{ m}}{\left(\frac{1}{m^2} - \frac{1}{n^2}\right)}$$

with m = 3, and n > 3 accounts for a series of spectral lines. This series is called the Paschen series and the wavelengths are

$$\lambda = \frac{91.18 \text{ nm}}{\left(\frac{1}{3^2} - \frac{1}{n^2}\right)} = \frac{820.62 n^2}{n^2 - 9}$$

The first four members are $\lambda_1 = 1876$ nm, $\lambda_2 = 1282$ nm, $\lambda_3 = 1094$ nm, and $\lambda_4 = 1005$ nm (b) The Paschen series converges when $n \to \infty$. This means

$$\frac{1}{n^2} \rightarrow 0 \Longrightarrow \lambda \rightarrow \frac{91.18 \text{ nm}}{\left(\frac{1}{3}\right)^2} = 820.6 \text{ nm}$$

(c) For a diffraction grating, the condition for bright (constructive interference) fringes is $d \sin \theta_p = p\lambda$, where p = 1, 2, 3, ... For first-order diffraction, this equation simplifies to $d \sin \theta = \lambda$. For the first and second members of the Paschen series, the condition is $d \sin \theta_1 = \lambda_1$ and $d \sin \theta_2 = \lambda_2$. Dividing these two equations yields

$$\sin\theta_2 = \sin\theta_1 \left(\frac{\lambda_2}{\lambda_1}\right) = \sin\theta_1 \left(\frac{1282 \text{ nm}}{1876 \text{ nm}}\right) = (0.6834)\sin\theta_1$$

The distance from the center to the first maximum is $y = L \tan \theta$. Thus,

$$\tan \theta_1 = \frac{y_1}{L} = \frac{0.607 \text{ m}}{1.5 \text{ m}} = 0.4047 \implies \theta_1 = 22.03^\circ \implies \sin \theta_2 = (0.6834) \sin 22.03^\circ \implies \theta_2 = 14.85^\circ$$

Applying the position formula once again, $y_2 = L \tan \theta_2 = (1.5 \text{ m}) \tan 14.85^\circ = 0.398 \text{ m} = 39.8 \text{ cm}$

25.21. Model: Use the photon model of light.Solve: (a) The wavelength is calculated as follows:

$$E_{\text{gamma}} = hf = h\left(\frac{c}{\lambda}\right) \Longrightarrow \lambda = \frac{\left(6.63 \times 10^{-34} \text{ Js}\right)\left(3.0 \times 10^8 \text{ m/s}\right)}{1.0 \times 10^{-13} \text{ J}} = 2.0 \times 10^{-12} \text{ m}$$

(b) The energy of a visible-light photon of wavelength 500 nm is

$$E_{\text{visible}} = h\left(\frac{c}{\lambda}\right) = \frac{\left(6.63 \times 10^{-34} \text{ Js}\right)\left(3.0 \times 10^8 \text{ m/s}\right)}{500 \times 10^{-9} \text{ m}} = 3.978 \times 10^{-19} \text{ Js}$$

The number of photons *n* such that $E_{\text{gamma}} = nE_{\text{visible}}$ is

$$n = \frac{E_{\text{gamma}}}{E_{\text{visible}}} = \frac{1.0 \times 10^{-13} \text{ J}}{3.978 \times 10^{-19} \text{ J}} = 2.5 \times 10^{5}$$

25.22. Model: Use the photon model. **Solve:** The energy of a 1000 kHz photon is

$$E_{\text{photon}} = hf = (6.63 \times 10^{-34} \text{ Js})(1000 \times 10^{3} \text{ Hz}) = 6.63 \times 10^{-28} \text{ J}$$

The energy transmitted each second is 20×10^3 J. The number of photons transmitted each second is $20 \times 10^3 \text{ J/6.63} \times 10^{-28} \text{ J} = 3.0 \times 10^{31}.$

25.23. Model: Use the photon model for the laser light.Solve: (a) The energy is

$$E_{\text{photon}} = hf = h\left(\frac{c}{\lambda}\right) = \left(6.63 \times 10^{-34} \text{ Js}\right) \left(\frac{3 \times 10^8 \text{ m/s}}{633 \times 10^{-9} \text{ m}}\right) = 3.1 \times 10^{-19} \text{ Js}$$

(b) The energy emitted each second is 1.0×10^{-3} J. The number of photons emitted each second is 1.0×10^{-3} J/ 3.14×10^{-19} J = 3.2×10^{15} .

25.24. Model: Use the photon model for the incandescent light. Solve: The photons travel in all directions. At a distance of *r* from the light bulb, the photons spread over a sphere of surface area $4\pi r^2$. The number of photons per second per unit area at the location of your retina is

$$\frac{3 \times 10^{18} \text{ s}^{-1}}{4\pi \left(10 \times 10^3 \text{ m}\right)^2} = 2.387 \times 10^9 \text{ s}^{-1} \text{ m}^{-2}$$

The number of photons that enter your pupil per second is

$$2.387 \times 10^9 \text{ s}^{-1}\text{m}^{-2} \times \pi (3.5 \times 10^{-3} \text{ m})^2 = 9.2 \times 10^4 \text{ s}^{-1}$$

25.25. Model: Use the photon model of light and the Bragg condition for diffraction.

Solve: The Bragg condition for the reflection of x-rays from a crystal is $2d \cos \theta_m = m\lambda$. To determine the angles of incidence θ_m , we need to first calculate λ . The wavelength is related to the photon's energy as $E = hc/\lambda$. Thus,

$$\lambda = \frac{hc}{E} = \frac{\left(6.63 \times 10^{-34} \text{ Js}\right)\left(3.0 \times 10^8 \text{ m/s}\right)}{1.50 \times 10^{-15} \text{ J}} = 1.326 \times 10^{-10} \text{ m}$$

From the Bragg condition,

$$\theta_m = \cos^{-1}\left(\frac{m\lambda}{2d}\right) = \cos^{-1}\left[\frac{\left(1.326 \times 10^{-10} \text{ m}\right)m}{2\left(0.21 \times 10^{-9} \text{ m}\right)}\right] = \cos^{-1}\left(0.3157m\right) \Longrightarrow \theta_1 = \cos^{-1}\left(0.3157\right) = 71.6^\circ$$

Likewise, $\theta_2 = \cos^{-1}(0.3157 \times 2) = 50.8^{\circ}$ and $\theta_3 = 18.7^{\circ}$. Note that $\theta_4 = \cos^{-1}(0.3157 \times 4)$ is not allowed because the $\cos\theta$ cannot be larger than 1. Thus, the x-rays will be diffracted at angles of incidence equal to 18.7°, 50.8°, and 71.6°.

25.26. Model: The angles for which diffraction from parallel planes occurs satisfy the Bragg condition. Solve: We cannot assume that these are the first and second order diffractions. The Bragg condition is $2d \cos \theta_m = m\lambda$. We have

$$2d\cos 45.6^\circ = m\lambda$$
 $2d\cos 21.0^\circ = (m+1)\lambda$

Notice that θ_m decreases as *m* increases, so 21.6° corresponds to the larger value of *m*. Dividing these two equations,

$$\frac{\cos 45.6^{\circ}}{\cos 21.0^{\circ}} = \frac{m}{m+1} = 0.7494 \Longrightarrow m = 3$$

Thus these are the third and fourth order diffractions. Substituting into the Bragg condition,

$$d = \frac{3 \times 0.0700 \times 10^{-9} \text{ m}}{2\cos 45.6^{\circ}} = 1.50 \times 10^{-10} \text{ m} = 0.150 \text{ nm}$$

25.27. Model: The x-ray diffraction angles satisfy the Bragg condition.

Solve: (a) The Bragg condition $(2d \cos \theta_m = m\lambda)$ for normal incidence, $\theta_m = 0^\circ$, simplifies to $2d = m\lambda$. For a thin film of a material on a substrate where $n_{air} < n_{material} < n_{substrate}$, constructive interference between the two reflected waves occurs when $2d = m\lambda$, where λ is the wavelength inside the material.

(b) From a thin film with a period of 1.2 nm, that is, with d = 1.2 nm, the two longest x-ray wavelengths that will reflect at normal incidence are

$$\lambda_1 = \frac{2d}{1} \qquad \lambda_2 = \frac{2d}{2}$$

This means that $\lambda_1 = 2(1.2 \text{ nm}) = 2.4 \text{ nm}$ and $\lambda_2 = 1.2 \text{ nm}$.

25.28. Solve: A small fraction of the light wave of an appropriate wavelength is reflected from each little "bump" in the refractive index. These little bumps act like the atomic planes in a crystal. The light will be strongly reflected (and hence blocked in transmission) if it satisfies the Bragg condition at normal incidence $(\theta = 0)$.

$$2d = m\lambda_{\text{glass}} = \frac{m\lambda}{n_{\text{glass}}} \Longrightarrow \lambda = \frac{2dn_{\text{glass}}}{m} = \frac{2(0.45 \times 10^{-6} \text{ m})(1.50)}{1} = 1.35 \ \mu\text{m}$$

25.29. Model: Particles have a de Broglie wavelength given by $\lambda = h/p$. The wave nature of the particles causes an interference pattern in a double-slit apparatus.

Solve: (a) Since the speed of the neutron and electron are the same, the neutron's momentum is

$$p_{\rm n} = m_{\rm n} v_{\rm n} = \frac{m_{\rm n}}{m_{\rm e}} m_{\rm e} v_{\rm n} = \frac{m_{\rm n}}{m_{\rm e}} m_{\rm e} v_{\rm e} = \frac{m_{\rm n}}{m_{\rm e}} p_{\rm e}$$

where m_n and m_e are the neutron's and electron's masses. The de Broglie wavelength for the neutron is

$$\lambda_{\rm n} = \frac{h}{p_{\rm n}} = \frac{h}{p_{\rm e}} \frac{p_{\rm e}}{p_{\rm n}} = \lambda_{\rm e} \frac{m_{\rm e}}{m_{\rm n}}$$

From Section 22.2 on double-slit interference, the fringe spacing is $\Delta y = \lambda L/d$. Thus, the fringe spacing for the electron and neutron are related by

$$\Delta y_{\rm n} = \frac{\lambda_{\rm n}}{\lambda_{\rm e}} \Delta y_{\rm e} = \frac{m_{\rm e}}{m_{\rm n}} \Delta y_{\rm e} = \left(\frac{9.11 \times 10^{-31} \text{ kg}}{1.67 \times 10^{-27} \text{ kg}}\right) (1.5 \times 10^{-3} \text{ m}) = 8.18 \times 10^{-7} \text{ m} = 0.818 \ \mu\text{m}$$

(b) If the fringe spacing has to be the same for the neutrons and the electrons,

$$\Delta y_{\rm e} = \Delta y_{\rm n} \Longrightarrow \lambda_{\rm e} = \lambda_{\rm n} \Longrightarrow \frac{h}{m_{\rm e} v_{\rm e}} = \frac{h}{m_{\rm n} v_{\rm n}} \Longrightarrow v_{\rm n} = v_{\rm e} \frac{m_{\rm e}}{m_{\rm n}} = \left(2.0 \times 10^6 \text{ m/s}\right) \left(\frac{9.11 \times 10^{-31} \text{ kg}}{1.67 \times 10^{-27} \text{ kg}}\right) = 1.1 \times 10^3 \text{ m/s}$$

25.30. Model: Electrons have a de Broglie wavelength given by $\lambda = h/p$. The wave nature of the electrons causes a diffraction pattern.

Solve: The width of the central maximum of a single-slit diffraction pattern is given by Equation 22.22:

$$w = \frac{2\lambda L}{a} = \frac{2Lh}{ap} = \frac{2Lh}{amv} = \frac{2(1.0 \text{ m})(6.63 \times 10^{-34} \text{ Js})}{(1.0 \times 10^{-6} \text{ m})(9.11 \times 10^{-31} \text{ kg})(1.5 \times 10^{6} \text{ m/s})} = 9.7 \times 10^{-4} \text{ m} = 0.97 \text{ mm}$$

25.31. Model: Neutrons have a de Broglie wavelength given by $\lambda = h/p$. The wave nature of the neutrons causes a double-slit interference pattern.

Solve: Measurements show that the spacing between the m = 1 and m = -1 peaks is 1.4 times as long as the length of the reference bar, which gives the real fringe separation $\Delta y = 70 \ \mu m$. Similarly, the spacing between the m = 2 and m = -2 is 2.8 times as long as the length of the reference bar and yields $\Delta y = 70 \ \mu m$.

The fringe separation in a double-slit experiment is $\Delta y = \lambda L/d$. Hence,

$$\lambda = \frac{\Delta y \, d}{L} \Rightarrow \frac{h}{p} = \frac{h}{mv} = \frac{\Delta y \, d}{L} \Rightarrow v = \frac{hL}{\Delta y \, md} = \frac{(6.63 \times 10^{-34} \text{ Js})(3.0 \text{ m})}{(70 \times 10^{-6} \text{ m})(1.67 \times 10^{-27} \text{ kg})(0.10 \times 10^{-3} \text{ m})} = 170 \text{ m/s}$$

25.32. Model: Electrons have a de Broglie wavelength given by $\lambda = h/p$.

Visualize: Please refer to Figure 25.11. Notice that a scattering angle $\phi = 60^{\circ}$ corresponds to an angle of incidence $\theta = 30^{\circ}$.

Solve: Equation 25.6 describes the Davisson-Germer experiment: $D\sin(2\theta_m) = m\lambda$. Assuming m = 1, this equation simplifies to $D\sin 2\theta = \lambda$. Using $\lambda = h/mv$, we have

 $D = \frac{h}{mv\sin 2\theta} = \frac{6.63 \times 10^{-34} \text{ Js}}{(9.11 \times 10^{-31} \text{ kg})(4.30 \times 10^6 \text{ m/s})\sin(60^\circ)} = 1.95 \times 10^{-10} \text{ m} = 0.195 \text{ nm}$

25.33. Model: A confined particle can have only discrete values of energy.Solve: (a) Equation 25.14 simplifies to

$$E_n = \frac{h^2}{8mL^2}n^2 = \frac{\left(6.63 \times 10^{-34} \text{ Js}\right)^2}{8\left(9.11 \times 10^{-31} \text{ kg}\right)\left(0.70 \times 10^{-9} \text{ m}\right)^2} = \left(1.231 \times 10^{-19} \text{ J}\right)n^2$$

Thus, $E_1 = (1.231 \times 10^{-19} \text{ J})(1^2) = 1.2 \times 10^{-19} \text{ J}$, $E_2 = (1.231 \times 10^{-19} \text{ J})(2^2) = 4.9 \times 10^{-19} \text{ J}$, and $E_3 = 1.1 \times 10^{-18} \text{ J}$. **(b)** The energy is $E_2 - E_1 = 4.9 \times 10^{-19} \text{ J} - 1.2 \times 10^{-19} \text{ J} = 3.7 \times 10^{-19} \text{ J}$.

(c) Because energy is conserved, the photon will carry an energy of $E_2 - E_1 = 3.69 \times 10^{-19} \text{ J}$. That is, $h_C = \frac{h_C}{(6.63 \times 10^{-34} \text{ Js})(3.0 \times 10^8 \text{ m/s})}$

$$E_2 - E_1 = E_{\text{photon}} = hf = \frac{hc}{\lambda} \Longrightarrow \lambda = \frac{hc}{E_2 - E_1} = \frac{(6.63 \times 10^{-34} \text{ Js})(3.0 \times 10^8 \text{ m/s})}{3.69 \times 10^{-19} \text{ J}} = 540 \text{ nm}$$

25.34. Model: A particle confined in a one-dimensional box has discrete energy levels. Solve: (a) Equation 24.14 for the n = 1 state is

$$E_n = \frac{h^2}{8mL^2} = \frac{\left(6.63 \times 10^{-34} \text{ Js}\right)^2}{8\left(10 \times 10^{-3} \text{ kg}\right)\left(0.10 \text{ m}\right)^2} = 5.5 \times 10^{-64} \text{ J}$$

The minimum energy of the Ping-Pong ball is $E_1 = 5.5 \times 10^{-64}$ J. (b) The speed is calculated as follows:

$$E_1 = 5.50 \times 10^{-64} \,\mathrm{J} = \frac{1}{2} m v^2 = \frac{1}{2} \left(10 \times 10^{-3} \,\mathrm{kg} \right) v^2 \Longrightarrow v = \sqrt{\frac{2 \left(5.50 \times 10^{-64} \,\mathrm{J} \right)}{10 \times 10^{-3} \,\mathrm{kg}}} = 3.3 \times 10^{-31} \,\mathrm{m/s}$$

25.35. Model: A particle confined in a one-dimensional box has discrete energy levels. Solve: Using Equation 24.14 for n = 1 and 2,

$$E_2 - E_1 = \frac{h^2}{8mL^2} (2^2 - 1^2) \Rightarrow 1.0 \times 10^{-19} \text{ J} = \frac{(6.63 \times 10^{-34} \text{ Js})^2}{8(9.11 \times 10^{-31} \text{ kg})L^2} (3) = \frac{1.809 \times 10^{-37} \text{ Jm}^2}{L^2}$$
$$\Rightarrow L = \sqrt{\frac{1.809 \times 10^{-37} \text{ Jm}^2}{1.0 \times 10^{-19} \text{ J}}} = 1.3 \times 10^{-9} \text{ m} = 1.3 \text{ nm}$$

25.36. Visualize: From the figure we see that the wavelength is 2.0 nm. We'll employ Equations 25.8 $(\lambda = h/p)$ and 25.9 $(E = p^2/2m)$ to express the kinetic energy in terms of wavelength. Solve:

$$E = \frac{p^2}{2m} = \frac{(h/\lambda)^2}{2m} = \frac{(6.63 \times 10^{-34} \,\mathrm{J \cdot s}/2.0 \,\mathrm{nm})^2}{2(9.11 \times 10^{-31} \,\mathrm{Kg})} = 6.0 \times 10^{-20} \,\mathrm{J}$$

Assess: This energy is a little less than one eV, which is reasonable.

25.37. Visualize: The strategy is to take ratios to find n and then plug it back in to find L. Solve:

$$\frac{E_{n+1}}{E_n} = \frac{\frac{h^2}{8mL^2}(n+1)^2}{\frac{h^2}{8mL^2}(n)^2} = \frac{(n+1)^2}{(n)^2} = \frac{6.4 \times 10^{-13} \text{ J}}{3.6 \times 10^{-13} \text{ J}}$$

Cancel $\times 10^{-13}$ J and take square roots.

$$\frac{n+1}{n} = \sqrt{\frac{6.4}{3.6}} = \frac{4}{3} \qquad \Rightarrow \qquad n = 3$$

So $E_3 = 3.6 \times 10^{-13}$ J. Now solve for L.

$$L = \sqrt{\frac{h^2 n^2}{8mE_n}} = \frac{hn}{\sqrt{8mE_n}} = \frac{(6.63 \times 10^{-34} \text{ J} \cdot \text{s})(3)}{\sqrt{8(1.67 \times 10^{-27} \text{ kg})(3.6 \times 10^{-13} \text{ J})}} = 29 \text{ fm}$$

Assess: This is not an atomic-sized box, but a nuclear-sized box; that's OK for neutrons.

25.38. Model: The allowed energies of a particle of mass *m* in a two-dimensional square box of side *L* are

$$E_{nm} = \frac{h^2}{8mL^2} \left(n^2 + m^2\right)$$

Solve: (a) The minimum energy for a particle is for n = m = 1:

$$E_{\min} = E_{11} = \frac{h^2}{8mL^2} \left(1^2 + 1^2\right) = \frac{h^2}{4mL^2}$$

(b) The five lowest allowed energies are E_{\min} , $\frac{5}{2}E_{\min}$ (for n = 1, m = 2 and n = 2, m = 1), $4E_{\min}$ (for n = 2, m = 2), $5E_{\min}$ (for n = 1, m = 3 and n = 3, m = 1), and $\frac{13}{2}E_{\min}$ (for n = 2, m = 3 and n = 3, m = 2).

25.39. Model: A particle confined in a one-dimensional box of length L has the discrete energy levels given by Equation 24.14. Solve: (a) Since the energy is entirely kinetic energy,

$$E_n = \frac{h^2}{8mL^2}n^2 = \frac{p^2}{2m} = \frac{1}{2}mv_n^2 \Longrightarrow v_n = \frac{h}{2mL}n \qquad n = 1, 2, 3, \dots$$

(b) The first allowed velocity is

$$v_1 = \frac{6.63 \times 10^{-34} \text{Js}}{2(9.11 \times 10^{-31} \text{ kg})(0.20 \times 10^{-9} \text{ m})} = 1.82 \times 10^6 \text{ m/s}$$

For n = 2 and n = 3, $v_2 = 3.64 \times 10^6$ m/s and $v_3 = 5.46 \times 10^6$ m/s.

25.40. Model: Sets of parallel planes in a crystal diffract x-rays.

Visualize: Please refer to Figure CP25.40.

Solve: The Bragg diffraction condition is $2d\cos\theta_m = m\lambda$, where *d* is the interplanar separation. Because smaller *m* values correspond to higher angles of incidence, the diffraction angle of 71.3° in the x-ray intensity plot must correspond to m = 1. This means

$$2d\cos 71.3^\circ = 1(0.10 \times 10^{-9} \text{ m}) \Rightarrow d = \frac{0.10 \times 10^{-9} \text{ m}}{2(\cos 71.3^\circ)} = 1.56 \times 10^{-10} \text{ m}$$

The cosines of the three angles in the x-ray intensity plot are $\cos 71.3^\circ = 0.321$, $\cos 50.1^\circ = 0.642$, and $\cos 15.8^\circ = 0.962$. These are in the ratio 1:2:3, which tells us that these are the m = 1, 2, and 3 diffraction peaks from a single set of planes with d = 0.156 nm.

We can see from the figure that the atomic spacing D of this crystal is related to the interplanar separation d by

$$D = \frac{d}{\sin 60^\circ} = \frac{0.156 \text{ nm}}{\sin 60^\circ} = 0.18 \text{ nm}$$

25.41. Model: Sets of parallel planes in a crystal diffract x-rays. Visualize: Please refer to Figure 25.7.

Solve: (a) The Bragg diffraction condition is $2d \cos \theta_m = m\lambda$. The plane spacing is $d_A = 0.20$ nm and the x-ray wavelength is $\lambda = 0.12$ nm. Thus

$$\cos\theta_{m} = \frac{m\lambda}{2d_{A}} = \frac{m(0.12 \times 10^{-9} \text{ m})}{2(0.20 \times 10^{-9} \text{ m})} = (0.3)m \Longrightarrow \theta_{A1} = \cos^{-1}(0.3) = 72.5^{\circ}$$

Likewise for m = 2 and m = 3, $\theta_{A2} = \cos^{-1}(0.6) = 53.1^{\circ}$ and $\theta_{A3} = \cos^{-1}(0.9) = 25.8^{\circ}$. These three angles for the x-ray diffraction peaks match the peaks shown in Figure 25.7c.

(b) The new interplaner spacing is $d_{\rm B} = d_{\rm A}/\sqrt{2} = 0.141$ nm (see Figure 25.7b). The Bragg condition for the tilted atomic planes becomes

$$\cos\theta_m = \frac{m\lambda}{2d_{\rm B}} = 0.4243m$$

For m = 1, $\theta_{B1} = \cos^{-1}(0.4243) = 64.9^{\circ}$. For m = 2, $\theta_{B2} = \cos^{-1}(0.8486) = 31.9^{\circ}$.

(c) The crystal is already tipped by 45° to get the tilted planes (see Figure 25.7b). So, for m = 1, $\theta_1 = 64.9^\circ - 45^\circ = 19.9^\circ$. $\theta = 64.9^\circ + 45^\circ = 109.9^\circ$ also, but we can't see beyond 90°. For m = 2, $\theta_2 = 31.9^\circ + 45^\circ = 76.9^\circ$. These two angles match the angles in the diffraction peaks of the tilted planes.

25.42. Model: This is an integrated problem that uses concepts from Chapter 22. There are two L's in the problem: L in Chapter 22 refers to the screen distance from the slits, and the L we want here is the length of the box. The wavelength of the neutron determined by the two-slit pattern is the same as the wavelength in the confined box.

Visualize: The figure shows $L_{\text{box}} = 2\lambda$.

We also need Equation 22.6: $y_m = \frac{m\lambda L_{screen}}{d}$. Also from the figure we see that $y_2 = 0.20 \times 10^{-3}$ m. We are given $L_{screen} = 2.0$ m and $d = 15 \times 10^{-6}$ m.

Solve: Solve Equation 22.6 for λ .

$$\lambda = \frac{dy_m}{mL_{\text{screen}}}$$
$$L_{\text{box}} = 2\lambda = 2\frac{dy_m}{mL_{\text{screen}}} = 2\frac{(15 \times 10^{-6} \text{ m})(0.20 \times 10^{-3} \text{ m})}{(2)(2.0 \text{ m})} = 1.5 \text{ nm}$$

Assess: The two pieces of this problem fit together and make sense together.

25.43. Model: Electrons have a de Broglie wavelength given by $\lambda = h/p$. Trapped electrons in the confinement layer behave like a de Broglie wave in a closed-closed tube or like a string fixed at both ends.

Solve: (a) The four longest standing-wave wavelengths in the layer are $\lambda = 2L$, L, $\frac{2}{3}L$, and $\frac{1}{2}L$. This follows from the general relation for closed-closed tubes: $\lambda = 2L/n$. Thus, $\lambda = 10.0$ nm, 5.00 nm, 3.33 nm, and 2.50 nm. (b) We have

$$p = mv = \frac{h}{\lambda} \Longrightarrow v = \frac{h}{m\lambda} = \frac{6.63 \times 10^{-34} \text{ Js}}{(9.11 \times 10^{-31} \text{ kg})\lambda} = \frac{0.7278 \times 10^{-3} \text{ m}^2/\text{s}}{\lambda}$$

Using the above four longest values of λ we get the four smallest values of v. Thus,

$$v_1 = \frac{0.7278 \times 10^{-3} \text{ m}^2/\text{s}}{10.0 \times 10^{-9} \text{ m}} = 7.28 \times 10^4 \text{ m/s}$$

 $v_2 = 1.46 \times 10^5$ m/s, $v_3 = 2.18 \times 10^5$ m/s, and $v_4 = 2.91 \times 10^5$ m/s.

25.44. Model: As light is diffracted by matter, matter can also be diffracted by light. **Solve:** The de Broglie wavelength of the sodium atoms is

$$\lambda = \frac{h}{p} = \frac{h}{mv} = \frac{6.63 \times 10^{-34} \text{ Js}}{(3.84 \times 10^{-26} \text{ kg})(50 \text{ m/s})} = 3.45 \times 10^{-10} \text{ m}$$

The slit spacing of the "diffraction grating" is $d = \frac{1}{2}\lambda_{laser} = \frac{1}{2}600 \text{ nm} = 300 \text{ nm}$. Using the diffraction grating equation with m = 1, we have

$$d\sin\theta = (1)\lambda \Rightarrow \sin\theta = \frac{\lambda}{d} = 1.151 \times 10^{-3} \approx 1.2 \times 10^{-3}$$

In the small-angle approximation, $\sin \theta \cong \tan \theta = y/L$. We get

$$y = L\sin\theta = (1.0 \text{ m})(1.151 \times 10^{-3}) = 1.2 \text{ mm}$$