
Division of Command and Control Warfare Technology
SE-581 11 LINKÖPING

FOA-R--00-01700-503--SE

December 2000

ISSN 1104-9154

Scientific Report

Mats Persson

Mobile Agent Architectures

#!/usr/local/bin/perl
use IO::Socket;
use IO::Select;

$listen_sock = new IO::Socket::INET(LocalPort=>2222, Listen=>5,
Proto=>'tcp', Reuse=>1);

$readable = new IO::Select($listen_sock);

while (1) {
@ready = $readable->can_read(30);
foreach $sock (@ready) {

if ($sock == $listen_sock) {
$new_sock = $sock->accept;
$readable->add($new_sock);

} else {
$buf = <$sock>;
if ($buf) {

$buffer{$sock} .= $buf;
} else {

eval $buffer{$sock};
$buffer{$sock} = "";
$readable->remove($sock);
close $sock;

}
}

}
}
simple mobile agent server (insecure!)

Distribution: HKV, FMV, FRA, FHS

FOA: Program, 1, 7, 76, 77

DEFENCE RESEARCH ESTABLISHMENT FOA-R--00-01700-503--SE

Division of Command and Control Warfare Technology December 2000

P.O. Box 1165 ISSN 1104-9154

SE-581 11 LINKÖPING

Mats Persson

Mobile Agent Architectures

ii

Issuing organization Document ref. No., ISRN

Defence Research Establishment FOA-R--00-01700-503--SE

Division of Command and Control Date of issue Project No.
Warfare Technology December 2000 E7023

P.O. Box 1165 Project name (abbrev. if necessary)
SE-581 11 LINKÖPING Computer Security Spec in Defence

SWEDEN

Author(s) Initiator or sponsoring organization
Mats Persson Swedish Decence

Project manager
Alf Bengtsson

Scientifically and technically responsible

Document title

Mobile Agent Architectures

Abstract

Mobile agent technology is a new research field. The purpose of this report is to take a closer look of this
new field, identify its problems, and describe its current state. The theoretical section of this report
defines the three properties of agents: mobility, executability and autonomy. The security implications of
these properties are analyzed, and some suggestions for protection techniques are given. A hostile
mobile agent can act like a virus, infecting the computer and doing serious damage. Many mobile agent
systems have been developed in recent years but several of them have been discontinued, because of
security issues and an immature research field. This report also suggests that the mobile agents can be
seen as a promising new paradigm for distributed programming of future computer networks.

Keywords

mobile code, mobile agents, computer security, software architectures

Further bibliographic information Language English

ISSN 1104-9154 ISBN

Pages 33 p.

Distributor (if not issuing organization)

F
O

A
10

04
U

tg
åv

a
01

19
99

.0
7

w
w

w
.s

ig
nf

or
m

.s
e/

F
O

A
S

ig
n

O
n

A
B

iii

Dokumentets utgivare Dokumentbeteckning, ISRN

Försvarets forskningsanstalt FOA-R--00-01700-503--SE

Avdelningen för Ledningssystemteknik Dokumentets datum Uppdragsnummer
P.O. Box 1165 December 2000 E7023

SE-581 11 LINKÖPING Projektnamn (ev förkortat)
Försvarsspecifik IT-säkerhet

Upphovsman(män) Uppdragsgivare

Mats Persson Försvarsmakten

Projektansvarig

Alf Bengtsson

Fackansvarig

Dokumentets titel

Arkitekturer för Mobila Agenter

Sammanfattning

Mobila agenter är ett nytt forskningsområde. Syftet med denna rapport är att närmare studera detta nya
område, identifiera problemen och att ge en översiktlig beskrivning av området. Den teoretiska delen av
den här rapporten definierar tre egenskaper för agenter: mobilitet, exekverbarhet och autonomi. Dessa
egenskaper medför en del konsekvenser som analyseras ur ett säkerhetsperspektiv, varefter några
förslag på skyddstekniker visas. En fientlig mobil agent kan uppföra sig som ett virus och infektera datorn
och orsaka stor skada. Många agentsystem har utvecklats de senaste åren men flera av dem har
försvunnit på grund av säkerhetsproblem och ett omoget forskningsområde. Den här rapporten antyder
även att mobila agenter kan vara ett nytt lovande paradigm för distribuerad programmering av framtida
datornätverk.

Nyckelord

mobil kod, mobila agenter, datasäkerhet, systemarkitektur

Övriga bibliografiska uppgifter Språk Engelska

ISSN 1104-9154 ISBN

Omfång 33 s.

Distributör (om annan än ovan)

Mobile Agent Architectures

Mats Persson

January 16, 2001

Abstract

Mobile agent technology is a new research field. The purpose of
this report is to take a closer look of this new field, identify its prob-
lems, and describe its current state. The theoretical section of this
report defines the three properties of agents: mobility, executability
and autonomy. The security implications of these properties are an-
alyzed, and some suggestions for protection techniques are given. A
hostile mobile agent can act like a virus, infecting the computer and
doing serious damage. Many mobile agent systems have been de-
veloped in recent years but several of them have been discontinued,
because of security issues and an immature research field. This re-
port also suggests that the mobile agents can be seen as a promising
new paradigm for distributed programming of future computer net-
works.

1

Contents

Summary 3

1 Introduction 5
1.1 Overview . 6

2 Background 6
2.1 The complexity problem . 6
2.2 The unpredictability problem 8

3 Properties of mobile agents 8
3.1 Mobility . 9
3.2 Executability . 10
3.3 Autonomy . 11
3.4 Security implications . 11

3.4.1 The virus problem . 12
3.4.2 Break-ins and exploits 12

4 Agents 13
4.1 Mobile agents . 13
4.2 Intelligent agents . 14
4.3 Distributed and mobile objects 14
4.4 Mobile code versus agents . 14
4.5 Agent languages . 15
4.6 Agents in military systems . 15

5 Agent architectures 16
5.1 Agent machinery . 16
5.2 Application areas . 17

5.2.1 Information retrieval 18
5.2.2 Remote control . 18
5.2.3 Programmable Networks 18
5.2.4 Distributed systems 18

5.3 Examples of agent systems . 19
5.3.1 Jumping Beans . 19
5.3.2 D’Agents . 20
5.3.3 Ant model . 22

5.4 Security for mobile agents and other problems 23
5.5 Distributed object systems . 25

6 Conclusions 26

7 The future 26
7.1 Research topics . 26
7.2 Predictions . 27

Definitions 28

References 29

2

Summary

Mobile agents are small intelligent programs that travel around in a com-
puter network. They are given instructions by the user or programmer
and then wander out in the network to accomplish their assigned task.
They can be told to collect information, report problems, perform compu-
tations or modify existing programs on other computers in the network.
In order to work, the mobile agents need a special infrastructure in the
network that handles the execution and transportation of the agents.

Mobile agents are a new technology that has emerged with the increased
use of computer networks and the arrival of the Internet and web tech-
nologies. One of the first uses of this new technology was searching the
Internet for the lowest price of a product by asking several companies for
the price of their product and then reporting back the lowest price. Since
then, many other new uses have been presented: surveillance systems,
information retrieval and mobile services.

In this report mobile agents are seen as both a technology and a new ab-
stract mechanism. Three properties are defined for this mechanism: mo-
bility, executability and autonomy. Mobility is the ability of the code to
move from host to host in the network; executability is the ability to exe-
cute as program code; and autonomy is the ability to act on its own and
make decisions. Some of these properties also exist in computer viruses
and worms, which has been a serious threat to computers in recent years.

The negative side of the agents is that they can be very dangerous if no
protective countermeasures are taken. Hostile agents can enter computer
networks and do serious damage. In this respect they are similar to viruses
and worms. Luckily, there are methods of protection, which are described
in this report. Briefly, the important methods of protection are: code sign-
ing, where the signature is checked before executing the code; path his-
tory, where the trustworthiness of previously visited sites is considered;
proof carrying code, where the code is proven secure; and sandboxing,
where the code is executed inside a protective and limited area. There are
also methods of protecting the agent from the environment in which it is
executing, but these methods are still being researched and some problems
are even considered impossible to solve.

The future of the mobile agent systems is not bright in every respect.
A large number of agent systems have been developed, many of which
have been discontinued, and the agent systems have not yet been a suc-
cess on the Internet. The reason for this is uncertain, but it is likely to be
the security problems and the fact that the technology is still in its infancy.
However, the mobile agent technology might be considered in some mili-
tary systems, where they can be important for maintaining redundant and
robust databases. Mobile agents can also be used for active surveillance of
either the real battlefield or the network itself.

Computer networks need an effective paradigm for using them, and the
mobile agent mechanism is a possible candidate. Computing is no longer
localized to a single central computer; instead processing takes place in the

3

distributed environment of the network. As a new paradigm it would be
placed at the same importance level as programming languages or object
orientation, although at a higher abstract level.

Intelligent software agents and multi-agent systems are other types of
agent systems that are not mobile and cause fewer security-related prob-
lems. Also, they are often focused on the artificial intelligence aspect and
are therefore not covered in this report.

4

1 Introduction

This report is a part of the ongoing research into mobile code in the project
“Computer Security Specific in the Defence” at the Swedish National De-
fence Research Establishment. One of the activities in this research is to
study the security of mobile code. This is an emerging and important field
within computer science, and security is often of military concern.

This report can also be seen as a summary and evaluation of the mobile
code field, with a focus on the current trends of mobile agent systems and
their major problems with security issues. Such security problems are of-
ten similar to the problems with computer viruses that are common today.
This report tries to discuss at a more abstract and theoretical level why we
have these problems.

In 1998, I wrote a report called “Mobile Code and Safe Execution” [1],
where several different languages and systems where studied with respect
to their ability to safely execute mobile code. The sandbox models of Java,
ActiveX, Perl, SafeTcl and a normal operating system (Unix) were com-
pared and evaluated. One of the conclusions of the report was that it was
possible to construct an acceptable and safe execution environment for
mobile code, but that the existing implementations still had some prob-
lems.

The concept of code that moves from one computer to another is not
new. In its most primitive form, you take a computer program stored on
some medium, move it to a computer and then execute it there. With the
advent of computer networks in the seventies, it became easier to move
program code by using the File Transfer Protocol (FTP). Examples of this
are remote batch jobs and the use of PostScript to control printers. Never-
theless, the code moved too slowly to give any obvious advantage. Secu-
rity issues were neither foreseen nor considered.

In recent years, the speed of the networks has increased tremendously,
and we now also have the World Wide Web (WWW), which is a new way
to transfer information. It became more common to move code via the
WWW, but also via email. The developers probably did not understand
how powerful mobile code was, and the technology arrived more by natu-
ral selection. The more powerful software had some kind of mobile code,
which was sent over the network or into itself, modifying its internal struc-
ture and state. Processes in an operating system are an example of the
latter.

In the early nineties there was a boom in research on mobile agents
and many different agent systems were designed and developed. Some
of these projects and systems have now disappeared, but the field is still
alive. In recent years, several standards have arrived, both for the com-
munication languages (FIPA, [25]) and the mobile agent platforms (MASIF
[26]). The programming language Java has almost become a de facto stan-
dard for the agents and the system itself.

But there is still no real “killer application” for agents. No application
has really shown how powerful agents are or become a huge success. In-

5

stead, the mobile code technology has trickled into many applications to
enhance their functionality. In a way it has become more of a program-
ming paradigm than a technology.

It should be noted that this report is not about intelligent software
agents that are based on the distributed artificial intelligence paradigm,
although they have several features in common with mobile agents.

1.1 Overview

This report is divided into several sections describing the theory behind
agents and the current state of the art in the mobile agent field. The first
section is the introduction, which also contains two problem descriptions.
The second section is a more theoretical description of the concept of mo-
bile code. The third section is a brief description of agents and is followed
by a section about agent architectures, which contains a fairly large de-
scription of one specific architecture. The report ends with Conclusions
and a Future Research section. A number of words and abbreviations are
defined on page 28.

The security issues are discussed mainly in sections 3.4 and 5.4. Some
military uses of mobile agents are mentioned in sections 4.6 and 5.2.2.

2 Background

As a further background, two general problems will be explained to give
the reader a better understanding of the ideas in this report.

2.1 The complexity problem

Computers have become more and more complex over the years. Not so
much the hardware, like processors which has mostly just become faster,
but the computer programs and the network have made the whole area
much more complex. This trend is likely to continue. Yet ordinary users
want computers that are easier to understand. Once they understand how
to use a certain technology or program, it immediately becomes more com-
plex. The likely reason is that once understood there is room for more
complexity. You could actually formulate this as a law:

Law: The complexity of computers will continue to increase such that
they are always one step ahead of the users ability to handle them.

The consequence is that computers will never become easy to use, un-
less you are an expert and have at least some basic programming skills.
The required level of skill can be seen in the levels of complexity, which
can be defined in ascending order as follows:

6

manipulate Simple form of interaction with a computer by point-
ing and clicking, or giving simple commands via the
keyboard.

configure Modifying the internal configuration of the computer,
and by this changing its behaviour.

program Programming a computer.
autonomisize (New word). Making certain tasks autonomous or au-

tomatic. Making program components that are au-
tonomous.

These levels can also be seen as abstraction levels. The last level (auton-
omize) is a newly introduced concept that I hope will be understood after
reading this report. The concept of object-oriented programming (OOP)
is somewhere between “program” and “autonomize” above. One of the
ideas in this report is to see components, OOP and CORBA, as steps on
the road to autonomous agents or some other form of mobile code. In the
industry, component programming has become popular, as it is quite easy
to program with components [8].

- -Autonomize

- -Autonomize

- -Autonomize

�

�

�

�
�

�

�

�
�

�

�

�
�

�

�

�

-

-

-

-

-

- -

- -

Timeline

Configure Program

Manipulate Configure Program

Guru

Expert

User

Novice

Computer

System

Network
Program

Autonomize

1970 1980 1990

Figure 1: Complexity levels

The picture in figure 1 needs some explanation. It shows how differ-
ent types of people operate a computer on different abstraction levels.
The unskilled novice operates by pointing and clicking (manipulating),
which affects the configuration, the programming and its autonomous
parts. On the other hand, the skilled guru operates, or rather makes, the
autonomous parts. The time line at the top of the picture shows the state
of the complexity at that time. The required level of skill of an expert to
program a computer in the sixties was almost at the same level as a novice
manipulating a computer today, assuming that many people today have
basic computer knowledge.

According to the picture above, the future lies in autonomy. That is not
the only possibility. The network is also in the future, and autonomous
programs wandering around in the network seems to be the most likely
prediction. This also seems to be unavoidable, if we want to use the power

7

of the network and computers to their fullest.
Web-browsers like Netscape and Internet Explorer, or programs like Mi-

crosoft Outlook, are well-known examples that use this autonomy, and
where you can see it most clearly. These programs are also the place where
you can see the security problems, which will be discussed in later chap-
ters in this report.

2.2 The unpredictability problem

A computer that gives different results from day to day or just behaves
erratically is nearly useless. Correct results are expected. Therefore, com-
puters have been made intentionally deterministic to make them more
predictable, but also easier to analyse. Engineers prefer to make syn-
chronous hardware instead of asynchronous, and software engineers want
tighter syntax and typed computer languages to make it easier to find
bugs. Neither do they want the unpredictability of computers that repro-
grams themselves.

Likewise, ordinary users of computers often do not like the sometimes
very erratic behaviour of computers. They do, however, more easily ac-
cept the same behaviour in other humans. Predictable behaviour is ex-
pected of computers.

In order to make the point even clearer; let us look at a programming
language. Perl is probably one of the least liked programming languages
among the hard-core computer scientists. It has quite a dynamic syntax
and has some constructions that are context sensitive. This makes the
language harder to parse. It can also turn a programming mistake into
unpredictable results or behaviour, without giving any warning or error.
The “magic” in this language is one manifestation of the unpredictability
problem.

When you release a mobile agent in the network, you lose control over it.
Even if it is programmed to follow a certain path, the network connections
or the computers can go down, causing the agent to get lost. If you let
the agent make its own decisions, it can take another path if one path is
blocked. Whichever way you do it, the mobile agent has an unpredictable
behaviour. You cannot trust it, regardless of any security precautions.

3 Properties of mobile agents

In order to get a better understanding of mobile agents, three properties
will be defined and explained in this section. They are mobility, executabil-
ity and autonomy. A mobile agent can be defined by using these three
properties. This definition of three properties is also useful because each
property can be analysed regarding its security implications. In an ear-
lier work [16], a similar taxonomy has been made with slightly different
properties.

Mobile agents are actually a subset of the larger field of mobile code. A
different way to classify mobile code is to divide its behaviour into four

8

distinct design paradigms [2]. These are the well-known “Client-Server”
paradigm, where the code does not move at all; “Remote Evaluation”,
which sends the code to another site where it is executed and the result is
sent back; and “Code on Demand”, where the code is downloaded from
a distant site and executed on the local machine. The fourth paradigm is
“Mobile Agents”, which are small programs that wander around in the
network. This classification system only helps us understand how mobile
code works and where it came from. It is not very helpful when studying
its security implications.

For more practical implementation issues, you can also look on a dif-
ferent abstraction level, where there are four mechanisms in mobile code:
mobility, communication, translation/execution, security [3]. These are
not explained in any depth in this report.

Mobile code can perhaps be seen as the new paradigm for solving the
complexity problem in section 2.1 above.

3.1 Mobility

The word “mobile” comes from Latin and means something that moves
quickly. At the other end of the scale, code moves very slowly when trans-
ported on a diskette or tape. It moves somewhat faster when moved by
the FTP mechanism. It is not slow because of the network, but because it
often involves a manual operation like pointing and clicking or giving a
command. If the transportation is without any manual work, it is only de-
pendent on network speed. Note that program code that needs to be com-
piled before it is executed is moving slower than an interpreted language,
because compilation often requires manual intervention. This shows that
there are degrees of mobility. The opposite of mobile is stationary.

If something moves faster, it is usually also more effective. Information
is more effective the faster it moves and spreads, and the same would ap-
ply to code that moves. Anything that moves fast also naturally becomes
more dangerous. Stopping a virus attack that spreads from computer to
computer within milliseconds is quite hard.

For the data to be able to move, it needs a channel. A slow channel
mentioned above is FTP. A fairly fast channel is WWW, but it requires
that the user is active, except for some smart Java applets or JavaScript
that keep the connection alive even when the user is inactive. Email is
quite a fast channel because the emails are handled automatically by the
mailservers, and one email can travel around the world in a couple of
minutes. The fastest channel is of course direct TCP/IP, or UDP, which
can be even faster in some cases.

Sometimes in the literature and texts about mobile code you see the two
notions, weak and strong mobility. According to another report [2] they
are defined as follows: strong mobility is the ability of a system to move
both the code and the execution state to a different host, where as weak
mobility is the ability to move only the code. That ability should fit better
in the next section about executability.

9

Site A Site B Site C
Code

Figure 2: Code moves from site to site

3.2 Executability

If a text or data can be understood or interpreted by a computer, it is said
to be executable. A binary program can be executed by a processor and
a script can be interpreted by an interpreter, which is a special program
designed to execute scripts. There is a duality between code and text. If
lines of text can be understood by both computers and humans, it is called
a programming language.

There are degrees of executability which can be divided into several lev-
els in ascending executability. The level classification is taken from the
previous report [1].

� Text contains information that is readable by humans only. An AI
program might understand it, but it contains no structured informa-
tion.

� Marks can be instructions inside the text denoting how to interpret
it. Usually, this is just a few characters, such as how to write a word
in bold text. In LATEX it is \textbf{Marks}.

� Macros are instructions that can generate a piece of text. For exam-
ple, a macro like <date> would generate today’s date and insert it
into the text.

� Controls are instructions for how data should be interpreted. They
can declare conditional text, define variables, and change them. Ba-
sically, they have taken over the control of the interpretation of the
data.

� Scripts is written in complete interpreting programming languages,
which are Turing machine equivalent. To put it more simple, any
program can be made in this language. In a script, you can control
the execution point with loops and jumps, as well as accessing many
system functions.

� Byte code is virtual machine code that is interpreted in a virtual pro-
cessor. At this point the code is really not readable by humans.

� Machine code is instructions for the processor in the computer. Ma-
chine code is often the result of a compilation. This level is usually
the lowest you can go, even though in some processors it is possible
to write micro code, which is instructions for the gates and subsys-
tems inside the processor.

10

The higher executability of the data, the more you can manipulate the
computer when it is executing the code. This also means that the lower
the executability, the easier it is to protect yourself. The reason is that in
machine code it is harder to put wrappers or extra layers over sensitive
system functions.

This classification is useful when evaluating the security level in mobile
code. You can also compare this classification with the complexity lev-
els in section 2.1 where the ordinary user understands “Text” or maybe
the “Marks” executability level. However, it is questionable whether this
comparison is meaningful.

3.3 Autonomy

When something is autonomous, it is acting on its own without any out-
side control. It is responding, reacting, or developing independently of the
environment. A piece of program code and data is self-contained when it
has encapsulated the code, data and environment into a unit. The envi-
ronment is the current program state with its variables and bindings to
resources. A binding can, for example, be a reference to a database or a
local printer.

An autonomous unit must also have a certain level of intelligence, so
it can react properly to its environment. This often means some kind of
rule-set.

One example of computer programs acting on their own is automatic
program updates where the program connects to a server, downloads new
code and updates itself. This can, of course, be very practical, as you do
not have to worry about the latest updates.

There might be different degrees of autonomy, but no such classifica-
tion is done in this report. There are differences in the intelligence in au-
tonomous units, and the automatic updates are a simpler form of auton-
omy. Asynchronity might also fit into this classification.

3.4 Security implications

For each property described above, there are obvious security implica-
tions. The higher degree of mobility, executability and autonomy a piece
of data has, the bigger threat it is to security. Fast-moving code can more
effectively damage a networked computer system. Machine code can get
closer to the operating system and kernel by calling system functions, or
even replacing some parts of it. An autonomous piece of code can adapt
to different environments and find better paths of attacks if the system is
well guarded.

If you can identify the threats, you can design proper protections against
them. By slowing down the process of dealing with incoming data, you
get better protection against an attack, for example requiring authentica-
tion before admitting the data. This is an unusual way of looking at the
authentication process. An attacker with a piece of hostile code will try to
find a faster path of attack if it is met with an authentication blocker.

11

To protect against the executability property, you can, for example, re-
move all special characters in emails and only allow the characters A-Z
and a-z. It becomes harder, but not impossible, to have a language that
can interpret only those characters. Machine code will be completely ru-
ined.

It is harder to defend against the autonomy property as you need hosts
that are smarter than the agents. One way is to fool the agents somehow,
for example by giving wrong or incomplete data, or special information
that only your own agents can understand.

3.4.1 The virus problem

A virus is mobile and executable but not very autonomous because it is
dependent on a host program that it attaches itself to. When a virus is
independent, it is usually called a worm. In recent years viruses have
become a major problem and have caused severe monetary damage in lost
data and work time. The normal way of handling viruses is to run virus
scanners that search the computer for code with certain signatures that
indicate that it is a virus and then delete it. Unfortunately, this scanning is
often done after the viruses have damaged the computer.

When an old known virus arrives into the computer, the virus scanner
usually catches them before any harm is done. But a new virus is prob-
lematic. An old virus is drastically reduced in speed and executability by
the virus protection software.

A better protection against all viruses would be to restrict their speed
and executability. In section 5.4 in this report, some protection methods
will be shown.

Why are there almost no viruses in the Linux operating system while
they are thriving in the Windows operating systems? The reason is that in
Linux there is no fast channel for the code to enter the computer. Linux
does not have automatic updates and has no executable email. Even if
a virus arrived it will have trouble with the Linux security levels, which
limits its executability.

3.4.2 Break-ins and exploits

Many hacker attacks are done by making code execute where it is not sup-
posed to. A typical exploit is to use a trick called “buffer overrun”. A
server accepts incoming data and stores it in a buffer, an area in the mem-
ory where the data are stored. The common mistake is to make this buffer
too small and without checks for writing outside the buffer. If someone
sends too much data at once, the last bytes of the data are placed where
they are later executed. These last bytes are where the hacker places the
machine code that makes the break-in. You can see this as another form of
mobile code.

12

4 Agents

According to some literature, a software agent is a program that acts on
behalf of someone else, or to put it differently, a computing entity that
performs user delegated tasks autonomously [9]. The first definition indi-
cates that an agent has the same rights as the user that controls it, and the
second that it only performs those tasks when asked to. These two defi-
nitions are a bit narrow, because an agent can also be quite independent
and do tasks on its own will and by this try to act more intelligently. A
better definition is that an agent is a program that has the executability
and autonomy properties defined in section 3.

Ordinary software agents are stationary and therefore only executable
and autonomous, according to the definition in the previous sections in
this report. Background processes or daemons in UNIX can also be seen
as stationary agents. It is possible to see the agent as a generic term or
even metaphor for a set of programs with certain properties. There are
many types of agents that are described in the following sections.

4.1 Mobile agents

Mobile agents have the ability to move from host to host, executing at
each place and then keeping the results before moving to the next server.
A simple picture of mobile agents in a network can be seen in figure 3. To
be able to move, there must be an agent server, sometimes called agency,
on each host that handles the incoming agents and executes them. This
agency is also responsible for sending messages between agents and does
some authentication if necessary.

Server A Server B Server C

Client

A

A

A A

Figure 3: Mobile agents wander around in the network

According to the literature [10], there are many advantages with mobile
agents.

� They reduce the network load by sending the code to the data host
instead of sending the data over the network.

13

� They overcome network latency in real-time systems because they
do not need a lot of bandwidth.

� They encapsulate protocols by bringing their own protocol code with
them.

� They execute asynchronously and autonomously, and are therefore
not dependent on a continuously open network connection.

� They adapt dynamically to new environments.

� They are naturally heterogeneous, and work well in a heterogeneous
network.

� They are robust and fault tolerant. If a host shuts down, the agents
can move to another host. They can also duplicate themselves and
execute on several hosts in parallel.

4.2 Intelligent agents

Intelligent agents are supposed to be very strong in the autonomy and in-
telligence aspect. They are able to interact with other agents, the user, or
their environment using a special communication language. They are able
to make decisions using their internal knowledge base and some kind of
reasoning rule system. They can adapt and react to a changing environ-
ment.

The Internet search engines and their search robots are successful ex-
amples of this kind of agents. Another example is the program that sorts
incoming mail into different folders using user specified rules.

4.3 Distributed and mobile objects

Mobile objects are noted for their relative lack of autonomy, but they can
still move their code in the network. They are related to distributed ob-
jects that do not move at all, but are spread out in the network. In these
objects, a method can be accessed from a computer anywhere else in the
network. To make this possible, they need a middleware that can keep
track of where they reside in the network and give them proper names.
This middleware is described in section 5.5.

4.4 Mobile code versus agents

Often in other literature and reports, the concept of mobile code is seen as
a wider area than mobile agents; the agents are seen only as a specialized
form of mobile code. According to the properties defined in this report,
this is not so.

Mobile code in its pure form has neither autonomy nor any intelligence.
It cannot remember what it did at its previous host and cannot make de-
cisions on where to go next. Examples of this form of mobile code are
applets on web pages, or any type of code on a web page.

14

4.5 Agent languages

The common language for writing agents today is Java and has become a
de facto standard. Java is a general programming language similar to C++
with object-oriented features. It is not specially designed for agents as was
the language Telescript and some other languages [11]. Note that there is
a difference between agent programming languages and agent communi-
cation languages, where the latter type is not covered in this report.

Due to the dynamic features of agents it would make sense to have a real
interpreting language like Tcl, Python or Perl, and not a semi-interpretive
language like Java. Also, it would probably be easier to build a more se-
cure environment with interpretive language. On the other hand, the Java
language is easier to analyze because of its strong typing, while Tcl, Python
and Perl have very weak typing or none at all.

Some agent languages like Telescript have some form of “move” com-
mand which gives them the ability to move the agent in the middle of exe-
cution and keeps its execution state and “program counter”. This ability is
usually called strong mobility. Some of the agent systems have languages
with special functions for cloning the agent, receiving events or sending
messages to other agents.

4.6 Agents in military systems

The robust and fault tolerant nature of agents makes them a viable solution
to many of the problems in the military systems, especially with the new
ideas in “Revolution in Military Affairs” (RMA) and its new command
and control system based on new information technology.

Some of the possible uses of agents in military systems are:

� Reactive sensor networks [22]. By using something called Au-
tonomous Networked Tactical Sentries (ANTS) in an array on the
battlefield, it can detect enemy positions and movements.

� Logistics control [23]. Agent technology and heterogeneous dis-
tributed database systems cooperate to manage logistics information
and materiel.

� Collecting and filtering information or data as a part of the informa-
tion fusion process, or act as database mediators/agents.

� The agents can avoid network latencies which often occur in radio-
based military networks, because they do not need continuous con-
tact with other hosts.

� Redundancy handling in the command and control systems. Some-
times hosts get destroyed in a battle and the agents running on this
host can have another redundant host where copies of the agents
continue to run.

See also section 5.2 below for other possible application areas.

15

5 Agent architectures

The software architecture field is more abstract, being the level above the
algorithms and data structures fields. Software architecture includes the
global control structures, protocols for communication, synchronization,
physical distribution, scaling and performance, and selection among de-
sign alternatives. It is on this level you see the common architectural styles
like pipes and filters, object orientation, event-based models, and table-
driven interpreters. Here you also see the distributed network architec-
tures.

One of the alternatives in the design of the software architecture is how
to access remote resources or make calls to remote objects; or how to send
the program code over the network. Four different paradigms have been
identified:

� Client-Server. This is the traditional paradigm where a client con-
tacts a server and data are transfered. In this paradigm no code is
sent at all.

� Remote Evaluation. In this paradigm a connection is made to a re-
mote site. Code is sent for execution at the remote site, and the re-
sults are sent back. Resources on the remote host are used.

� Code on Demand. This is the opposite of remote evaluation. The
code is fetched from a remote site, downloaded and executed lo-
cally. This is how many web browsers work when they, for example,
download JavaScript.

� Mobile Agents. Here the code, including its execution state and
some of its resources, is sent to a remote site where it executes. It
can continue to another site if needed.

Currently, the client-server paradigm is the most common style, and it is
even more refined in the distributed object-oriented systems like DCOM
and CORBA. The code on demand paradigm is, of course, common on
the web. By putting the mobile agent architecture as a separate paradigm
above, it is made to look like a completely separate paradigm. This view
can be a mistake as it has been shown that mobile agents as a replace-
ment for client-server are not always a good idea. For example, the mo-
bile agents may have to carry around the data in their walk around the
network, while the client-server sends the data back immediately, which
actually reduces the network load in many situations.

In the following sections the mobile agent architecture will be described
and analyzed in more detail.

5.1 Agent machinery

In order to make a mobile agent system work, it is not enough to build
the agents themselves. A program at each site is also needed to handle

16

the incoming agents and send out agents. This program is often called an
agency. The agency can be built differently depending on which type of
agent system is needed, but a general architecture can be seen in picture 4.

-

-

�

�

?

@

@

-

-

�

Directory
Database

Security
OS

nication
Commun-

Interagent
messaging

Agent repository

Executer
Interpreter

State engine

Agency

Figure 4: Generic mobile agent system architecture

The generic mobile agent system can have a range of varying compo-
nents. It needs a communication module that handles incoming and out-
going agents, as well as the messaging between non-local agents. It has
a repository that performs authentication, sets priorities and queues up
agents for later execution. The executing module has an interpreter and
can sometimes run agents written in different languages. The state engine
contains the current state of the agency and can have some kind of rule
or inference engine that decides what to do with the agents. It also han-
dles local inter-agent communication. There is also some kind of database
or directory where data are stored or retrieved by the agents. The secu-
rity module acts as a kind of sandbox that keeps track of what the agents
are allowed to do. It also monitors the agency. There can, of course, be
security functionality in the other modules too, such as encryption in the
communication module.

5.2 Application areas

One of the first ideas was to use agents for searching through the Internet
for the lowest prices of products and services. While the idea was good
in theory, few companies wanted other people’s agents in their comput-
ers. Not only for security reasons, but probably for marketing reasons too.
They wanted people to come to their place and keep them there. Agents
are impersonal, and you cannot make deals with them or fool them.

In the middle of the nineties there was a slight boom in agent systems,
many of which have disappeared now. So there is currently a slight lack of
good applications for the agent technology, or at least not any well-known

17

and popular application. The reason could be that the research in the area
was not really mature or finished, and the technology was released too
early at the start of the web revolution. It is possible that the real boom
might not come until it marries with another field in need of a technology.

Although there are many suggestions for possible uses of agents they
can generally be divided into four areas. Some of the following areas are
not really mobile agents, but often the difference between agents and mo-
bile code is not very large.

5.2.1 Information retrieval

One important activity many people want to do is to search for infor-
mation on the web [18]. Collecting, sorting and moving information is
probably the most important usage of the Internet, or any other network.
The agents can act like search robots, wandering from site to site filtering
and collecting information. There is also electronic commerce, where the
agents locate products and services, compare prices, and negotiate price.

5.2.2 Remote control

Remote control applications are intended to control or reprogram remote
computers, devices or unmanned vehicles by sending agents with new
commands or program updates. These updates can be done very quickly,
making it very good for applying security patches. Agents can also be
used for monitoring devices and reporting back when status changes or
problems occur, or can even be used for intrusion detection and active
defence of computer systems [19].

A similar example of remote control is an abstraction called Mobile
Streams [14]. Using that system, a distributed, event-driven application
can be scripted from a single point of control and dynamically extended
and reconfigured during execution.

5.2.3 Programmable Networks

The third application area for mobile agents or simply mobile code is to
dynamically program the networks themselves in order to make them
more flexible, customized and give them higher performance. At the
lower level, the network devices like routers and switches can be remotely
programmed [24] by sending mobile code which can change the topology
and routing. In telecommunication networks, service components can be
distributed with the help of mobile code [7]. Instead of being passive, the
networks become more active by taking certain part in the computations
or filtering the data [12]. This can be achieved by adding code fragments
to the data packets.

5.2.4 Distributed systems

Instead of doing all the processing and computations on a central com-
puter they can be distributed to several computers in a network. It is

18

somewhat similar to process migration, but the difference is that processes
usually migrate within a tightly coupled unit with several synchronized
processors. The code is distributed to the remote computer to do the fil-
tering and processing locally. This often reduces the network traffic and is
also a way to balance the load of computers with different capacities. It can
also be more redundant when several computers do the same processing
and the results can be compared.

5.3 Examples of agent systems

About one hundred agent systems have been made to date [28], and there
are probably many unofficial systems. About half of them have been made
in academic environments and the other half in commercial companies.
There are two interesting things to note here: the agent systems have been
commercially developed at the same time, as it has been a hot and new
research area. Also, most agent systems have been developed on Unix
systems.

Many of the agent systems have disappeared by now, and the research
and development on them have closed down, while others have found a
small application niche and still survive.

Examples of agent systems include Aglets, D’Agents, ARA, Concordia,
Java Beans, Mole, Odyssey, TACOMA, Voyager, Telescript and SHIP-MAI.
More descriptions of these systems, and several others, and how they
work can be found in [13]. Three systems will be shown or examined in
more detail in this report.

5.3.1 Jumping Beans

The Java language has more or less become the de facto standard within
the agent technology area. Most new agent systems are based on Java, and
one of them will serve as an example on these. Jumping Beans is a com-
mercial product from Ad Astra Engineering [27]. It is based on Java Beans
which jump from computer to computer during execution. The beans are
actually components or objects.

Jumping Beans is a framework, or API, which the developers can em-
bed in their applications to add mobility to their projects. By embedding
Jumping Beans, the applications can jump from computer to computer
while they are executing, even if the application has never been installed
on the target machine.

Each host computer that wishes to participate in the framework must
have the Jumping Beans ”daemon” software running on it, which listens
to the TCP/IP port to receive mobile applications. In addition it performs
many other tasks, including:

� Receiving incoming mobile applications.

� Enforcing security while mobile applications are executing.

� Dispatching, deactivating, and reactivating mobile applications.

19

� Providing Jumping Beans services to mobile applications and to the
resident host software.

� Crash recovery when needed.

Jumping Beans has several uses. It can be a replacement for the SNMP
(Simple Network Management Protocol), or provide automatic response
for network events and load new modules when needed. It can also be
used for remote network management by dispatching commands to re-
mote devices, or for intelligent software distribution.

The Jumping Beans system aims for a high security level and has many
of the usual security features of the traditional sandbox. Jumping Beans
security is based on ACLs, user log-ons, certificates, public/private keys,
digital signatures, and central management. While the mobile application
is executing, security is enforced by the Jumping Beans client using Java
security capabilities. During transport, security is enforced jointly by the
central server and the receiving client. Having a central server that man-
ages security is an easy way to solve many security problems, but as a
critique of this product, this is not very flexible, scalable or robust.

This product has a thorough treatment of the security problems of mo-
bile agents and it seems as if a security expert designed it, which was the
main reason it is described in this report.

5.3.2 D’Agents

D’Agents is a mobile agent system from Dartmouth College in New
Hampshire, USA, where it has been an ongoing research project for sev-
eral years. It is developed on Unix, and the agents can be written in Tcl,
Java or Scheme. To be able to run the agent system, you must have an
agent server listening to a certain port on each computer. The agent server
consists of an interpreter and a number of help agents that handle policies.

In 1999 a short paper was written [21] on middleware, where the
D’Agents system was studied and evaluated in more detail. The following
is a translation of some of that text.

Implementation

The programming languages in D’Agents have been extended with some
extra functions to facilitate moving, cloning and message-passing between
agents. The more important ones are shown in Table 1 below. There are
also functions for handling events, but these are rather primitive, and the
agent must handle most of the mechanisms itself. Figure 5 shows an ex-
ample of an agent written in Tcl that uses some of these functions.

Security

D’Agents has several security mechanisms. It has authentication of the
agents with PGP and a sandbox based on Safe-Tcl for the Tcl interpreter.
The sandbox can be configured to allow only a certain number of hops

20

agent submit Starts a new agent on this or some other computer.
agent jump Moves this agent to another computer.
agent fork Clones a copy of this agent.
agent send Sends a message to another agent.
agent receive Receives a message.

Table 1: New functions

proc hello {} {
global agent
main create -name Hello -display $agent(actual-server):0
button .button -text "Hello, World!" -command {set done 1}
pack .button
tkwait variable done

}
agent_begin
puts "Enter a nonnegative integer: "
gets stdin number
agent_submit $machine -vars number -procs factorial \
-script {factorial $number}

agent_receive code result -blocking
puts "$number! is equal to $result\n"
agent_end

Figure 5: Example of an agent written in Tcl code

for the agents, how many clones they can make, how much time they can
use, and several other configurations. Every agent that arrives at the agent
server is first authenticated with PGP. Then its programming language is
identified and the code is sent to the right interpreter and executed. When
required the credentials of the agents are checked with another stationary
agent called resource manager, which searches for the name in a policy file.
If the resource manager finds the name, it answers “yes” or “no” depending
on whether the operation is permitted or not. An operation can be, for
example, agent_submit which starts a new agent, or an operation can
provide access to the file system.

D’Agents uses the underlying operating system for certain parts of the
security. Each agent runs as a separate process and can then be limited in
time and memory by using some system calls of the operating system.

Security deficiencies

There are several deficiencies in D’Agents if you use the list of security
requirements of mobile code in [1].

� No logging of agents: There should be some kind of log of incoming
and outgoing agents, as well as executed agents and newly created
agents.

21

� No access control for files: There is no system for handling access con-
trol for the files, so if the agent gets access to the file system, it can
write and read everywhere the agent system has access. This way it
can modify its own rights.

� Unrestricted memory allocation: There is currently no memory limit for
the agents. It is easy to make an agent that consumes a lot of memory
and that way makes a Denial-of-service attack. An example of this
code can be seen in figure 6. It would be possible to use ulimit in
Unix to set the memory limit.

� Allows eval in code: If someone with many privileges writes an agent
that contains an eval, it can become a potential security hole. Luck-
ily, the current implementation did not have this hole.

proc hog {} {
set x 0;
while {1} {

incr x;
set a($x) "test";

};
}

agent_submit perseus -procs hog -script hog

Figure 6: Memory consumer

Design

Even though the D’Agents system is an experimental academic research
system, there are some design issues that can lead to further potential se-
curity problems. It is written in C++, and there is not much documentation
on it, which makes it harder to analyze or even get an overview of the sys-
tem. The communication protocol between the agents has faults, and the
errors are hard to find because neither the protocol nor the program code
is properly documented. The implementation forks too often when it ex-
ecutes an agent, which creates unnecessary processes. Lastly, few error
messages are given to the user, and it is hard to generate them in general.

5.3.3 Ant model

The idea of the ant model is to have a much simpler programming lan-
guage for the agents, let them wander around more randomly and freely,
and let them have a non-deterministic behaviour similar to ants. This con-
trasts with ordinary agents, which can have quite complex code both for
execution and moving scheme. Moreover, the people who program them
naturally want them deterministic. The ant model in this section is my

22

own, but similar robot models or swarm theories exist elsewhere in re-
search.

These ant agents should consist of three parts: a name, a piece of simple
code, and a container for data. The ant agents could wander around pick-
ing up some data at one agency and dropping it off somewhere else. There
could also be killer agents that destroy other agents, generator agents that
create new agents, or clone agents that copy other agents.

In each agency there would be one heap where all the data are dropped
or picked up. There would also be several functions that the agents could
use for more advanced processing, calculations or system calls.

There would not be much security, except limits on the size of the agents,
the size of the heap, or available system functions. Other agents would
protect the agency by killing off unwanted agents.

The ant agents would not operate as single units but as a collective. Sev-
eral agents working together could make a calculation. This would require
quite different programming methods and a more distributed thinking by
the programmer.

5.4 Security for mobile agents and other problems

The greatest challenge in mobile agent technology is probably the security
problems [6]. The concept of letting your own agents enter other people’s
computers or letting other foreign agents enter your computer without
proper protection, can be very dangerous. It would be quite easy to write
an agent virus if there was no form of protection.

The security problems for agents can be divided into four types: protect-
ing the host from attacks by the agent, protecting the agent from tampering
by the host it is executing on, agent versus agent, and attacks from other
entities on the agent. However, the last three types can be combined into
one type of protecting the agent. The methods of attacks, which are com-
monly known within the security field, are disclosure, denial of service,
corruption, and interference.

There are many useful solutions for protecting the agent host. Fortu-
nately, many techniques from the traditional areas of trusted systems and
communication security can be applied in an analogous way. Several of
the following solutions come from an earlier work [15].

� Signed code: The agent is authenticated before it is allowed to enter
the agency. This is done by letting the agent carry a digital signature
of itself.

� Path histories: The idea behind path histories is to have a record of
previously visited sites. By looking at this history, the agency can
decide whether to trust the agent or not. Before sending away the
agent, a new digital signature by the current host is added to the
record.

� Proof carrying code: The producer of the code in the agent must
supply a proof that the code is safe. The proof is verified before ex-

23

ecuting the code. In Java, a simpler version of this method is used,
where the code is verified but the agent carries no proof, and instead
relies on type safety.

� Executing code in a sandbox: The code in the agent is put in a con-
strained executing environment where it is limited in time, memory,
range and duplication. The access to system functions is also quite
limited or filtered through a protecting layer.

� Logging: If the incoming and outgoing agents are logged, it is much
easier to detect and trace attacks from hostile agents. The logging
is not really protection as it cannot prevent damage, but it improves
the security level.

A much more difficult problem is to protect the agent from either of the
other agents, the host or other entities, because there are no traditional
techniques to be used as the problem of protecting an application from the
operating system has never been considered. If there are no security coun-
termeasures, a malicious agent host can easily examine the code in the
agent, clone it or modify its code or data. A number of different techniques
have been proposed, which can generally be divided into four types.

� Data encapsulation: The results of the agent’s actions can be pro-
tected by the means of encryption and digital signatures. A trusted
third party can also be involved by giving a timestamp. This en-
capsulation does not give any real protection but tampering with the
data can be detected, and previous results stored in the agents cannot
be read by the current host when the data are encrypted. However,
it can be deleted or removed. One other problem with this method
is that it requires quite large keys and signatures to be carried with
the agent, but by using a technique with sliding encryption this load
can be reduced.

� Multiple agents: In this technique one or more extra agent is created
for every original agent that is created. One extra agent can act as a
watch guard and keep track of the original agent’s actions and path.
If several agents are created, they act as redundant copies, and if the
original agent is destroyed or tampered with, at least some of the
extras may survive and continue execution.

� Blackbox execution: The code of the agent is encrypted and executed
in such a way that no information of its algorithm is revealed. This
technique is very powerful but does not protect against agent de-
struction or denial of service. The agent host can still fool the agent.
Currently only some theoretical work has been done in this area with
encrypted functions. Some work has also been done with obfuscated
code that is very hard to read for the human eye, but the main prob-
lem of blackbox execution is still unsolved.

24

� Tracing: The agent can keep a trace of which actions or operations
it has done on that host. Usually this information is hashed or en-
crypted. The original host can then examine the agent when it re-
turns and verify that it has done the correct operations. If the original
host detects tampering, it can figure out which host in the network
is malicious and avoid sending agents to it.

There are also a few other problems in the mobile agent area that are
not related to security. While the size of the agent is supposed to be rela-
tively small if it is going to reduce the network overhead, the size of the
data it carries can sometimes grow very large if it visits a lot of hosts and
collects information at each place. Sometime it can be better to use the tra-
ditional client-server model or even let the agent send the data back to its
originating host.

This leads to the problem of sending messages to agents. If the agent is
jumping quickly from host to host, how can the message packet catch the
agent and deliver its message to the agent? One solution to this problem is
to send out several messages in a large wave across the network, and the
agent cannot escape. Unfortunately, this creates a lot of overhead in the
network load.

Objects in a distributed system need distinguishing names. They also
need to be fairly short; otherwise it would create too much overhead.
Agents can be created at a very high rate and sent out all over the net-
work. This can result in some naming problems even if there are central
servers that keep track of their names. The obvious solution is to give each
agency one name that it prepends to each agent, but the problem here is
when agents are cloned at other hosts or new ones created at virtual agen-
cies on foreign hosts.

5.5 Distributed object systems

An object is a separate program component with a set of data and meth-
ods (functions). They are often made in an object oriented programming
language. Distributed objects are objects that can reside on any computer
in a network, and any other object can use a method in this object from
any other place in the network. To be able to do this a special system is
needed, which keeps track of where the objects are in the network and
which interface they have. This system also handles synchronising, error
handling, security and naming of new objects. There is often also a “glue”
for cooperating with older software that is not object-oriented.

Examples of distributed object systems are CORBA and DCOM. These
systems are not made for sending mobile code, as the objects are not mov-
ing in the system. However, the distributed systems can act as a backbone
for an agent system, giving them an infrastructure, the means for commu-
nication and naming. For example, ActiveX controls are already based on
DCOM.

25

6 Conclusions

This report has shown that mobile agents have three properties: mobility,
executability, and autonomy. It has also tried to show that these three
properties are quite powerful as a new programming paradigm, but also
that the current state of the mobile agent field is perhaps not on the right
track when it is searching for a good application.

Many projects on mobile agents have failed. The reason is not certain,
but it can be because of a lack of good applications, too many security
problems or a lack of trust in this new technology. It looks like the mobile
agent technology is at a crossroads and is choosing between going even
more “engineered” and deterministic or going into the more “biological”
and chaotic path. One observation is that agents are not as much a tech-
nology that is a paradigm, a way of programming like object orientation,
or even at the same abstract level as “programming language”. It is prob-
ably a mistake to make agent systems an entirely separate technology or
method for solutions in a distributed environment like the Internet.

One major obstacle on the way is the security issues. The agent host
must be protected from the agents, and the agents must be protected from
each other and the host. There are some viable solutions for host protec-
tion, but there is still a need of research into the protection of agents.

7 The future

Research in mobile agents is quite young and there is considerable re-
search in progress in this area. Many problems with security and dis-
tributed systems need to be solved.

7.1 Research topics

The current research topics can be divided into the three areas of appli-
cations, techniques, and protection. In the area of applications there is
work being done in mobile code for remote control and autonomous sen-
sor networks. There is also a possibility to use mobile agents as a form of
advanced IT-weapons.

New techniques for agent communication, agency architecture, topolo-
gies, naming, and integration with other object technologies are also
needed.

The protection of the agent is an important problem. In section 5.4,
several protection techniques have been outlined and in many cases need
more research. The most interesting and perhaps the most difficult prob-
lem is black box execution. Other topics within agent security are listed
below.

� Flexible access control: A better system for access control is needed
[17]. The agent could carry its credentials with it and be given dif-
ferent access depending on how trusted it is. Many existing agent
systems have too simple access control.

26

� Recursive evaluation: This phenomenon occurs when an interpreter
starts running an interpreter inside the program being executed.
Thereby it is possible to execute data that was not intended for exe-
cution. This may result in unexpected security holes.

� Protection against viruses and superworms: Although the agent sys-
tems can be used as intrusion detection, the security techniques from
the agent technology can be used for protection against viruses and
superworms in the operating system. A superworm is basically an
agent that does not need an agency to work, and instead uses faults
in the operating system for execution and mobility.

7.2 Predictions

Lastly in this report, there is room for more speculative predictions about
the future. Some ideas about an ant model have been described in section
5.3.3 above. Many other analogies can be made with similar phenomenons
in nature, like swarm theories where the agents acts like a large swarm, or
the agents try to simulate the human brain like a neural network. Will the
global network like the Internet become a global brain [5]? Other ideas,
like evolutionary programming and genetic programming, also have their
roots in nature.

Distributed programming might become the new paradigm. Mobile
code will be an important part of this paradigm. New primitives for dis-
tributed programming will be needed. Other work in this area is the more
formal pi-calculus [20], which is a process algebra where processes, or per-
haps even agents, can interact by sending communication links to each
other.

As mentioned at the end of section 2.1, the future probably lies in auton-
omy and the distributed autonomous network.

27

Definitions
ACL Access Control List. A list of people/objects which have

access to a file or other entity.
ActiveX A technology with protocols and interfaces for download-

ing distributed objects. Based on DCOM.
API Application Programming Interface. Description of how to

interact with a program.
C++ Object-oriented programming language based on C.
CORBA Common Object Request Broker. A system for letting dis-

tributed objects communicate with each other.
DCOM Distributed Common Object Model. Similar to CORBA but

developed by Microsoft.
FIPA Foundation of Intelligent Physical Agents.
FTP File Transfer Protocol.
Java Object-oriented programming language similar to C++.

Has a strong type system and is often interpreted.
LaTeX A typesetting language.
MASIF Mobile Agent System Interoperability Facility.
OOP Object Oriented Programming.
PGP Pretty Good Privacy. A non-hierarchal public/private key

system.
Perl Originally a text processing and system administration pro-

gramming language. Interpreted.
Python Interpreted programming language with good object orien-

tation. Dynamic.
SNMP Simple Network Management Protocol. Used for control-

ling networks.
Tcl Simple interpreted programming language.
TCP/IP Transmission Control Protocol/Internet Protocol.
Telescript A programming language for mobile agents developed by

General Magic. No longer exists.
WWW World Wide Web.
UDP User Datagram Protocol. Has no packet synchronization.

28

References

[1] Mats Persson, Mobile Code and Safe Execution, User Report, FOA-
R–98-00807-503–SE, April 1998

[2] Alfonso Fuggetta, Gian Pietro Picco, Giovanni Vigna. Understanding
Code Mobility, IEEE Transactions of Software Engineering, Vol 24,
No 5, May 1998

[3] Gian Pietro Picco, Tutorial: Understanding Code Mobility, Tutorial
handouts on conference “Agent Systems and Applications/Mobile
Agents” (ASA/MA ’99)

[4] Jan Vitek, Christian D. Jensen (Ed), Secure Internet Programming,
ISBN 3-540-66130-1, Springer Verlag, 1999

[5] Michael Brooks, Global Brain, New Scientist, 24 June 2000, pp 22-27

[6] Detlef Schoder and Torsten Eymann, The Real Challenges of Mobile
Agents, Communications of the ACM, June 2000, Vol 43. No. 6, pp
111-112

[7] Lars Hagen, Markus Breugst, Thomas Magedanz, Impacts of Mo-
bile Agent Technology on Mobile Communication System Evolution,
IEEE Personal Communications, Aug 1998, pp 56-69

[8] Peter M. Maurer, Components: What If They Gave a Revolution and
Nobody Cares?, IEEE Computer, June 2000, pp 28-34

[9] Alper Caglayan, Colin Harrison, Agent Sourcebook, ISBN-0-471-
15327-3, Wiley 1997

[10] Danny B. Lange, Mitsuru Oshima, Seven Good Reasons for Mobile
Agents, Communications of the ACM, March 1999, Vol 42 No 3, pp
88-89

[11] Tommy Thorn, Programming Languages for Mobile Code, ACM
Computing Surveys, September 1997

[12] Markus Breugst, Thomas Magedanz, Mobile Agents - Enabling Tech-
nology for Active Intelligent Network Implementation, IEEE Net-
work Magazine, May/June 1998, pp 53-60

[13] Vu Anh Pham, Ahmed Karmouch, Mobile Software Agents: An
Overview, IEEE Communications Magazine, July 1998, pp 26-37

[14] M. Ranganathan, Virgnie Schaal, Virginie Galtier, Doug Montgomery,
Mobile Streams: A Middleware for Reconfigurable Distributed
Scripting, ISBN 0-7695-0340-3, Proceedings ASA/MA 99, pp. 162-175

[15] Wayne A Jensen, Countermeasures for Mobile Agent Security, Com-
puter Communications, Special Issue on Advances in Research and
Application of Network Security, Elsevier Science BV, Summer 2000

29

[16] Stan Franklin, Art Graesser, Is it an Agent, or just a Program?: A Tax-
onomy for Autonomous Agents, Proceedings of the Third Interna-
tional Workshop on Agent Theories, Architectures, and Languages,
Springer-Verlag, 1996

[17] Trent Jaeger, Aviel D. Rubin, Atul Prakash, Building Systems that
Flexibly Control Downloaded Executable Content, Proceedings of
Sixth USENIX Security Symposium 1996

[18] B. Brewington, R. Gray, K. Moizumi, D. Kotz, G Cybenko, D.
Rus, Mobile Agents in distributed information retrieval, In Matthias
Klusch, editor, Intelligent Information Agents, Springer-Verlag, 1999

[19] Mark Crosbie, Gene Spafford, Active Defence of a Computer System
using Autonomous Agents, Technical Report No. 95-008, COAST,
Purdue University

[20] Joachim Parrow, An introduction to the �-calculus, chapter in
Handbook of Process Algebra (not published yet), Elsevier 2000,
http://www.it.kth.se/˜joachim/intro.ps

[21] Mats Persson, Mellanskiktsprogram för Mobil Kod, Agentsystemet
D’Agents, FOA internal PM, Reg. nr. 99-1669/L

[22] Reactive Sensor Networks, http://strange.arl.psu.edu/RSN/

[23] Logistics Information Access via Cooperating Agents,
http://www.engr.sc.edu/research/CIT/projects/ALP.html

[24] NetScript: A Language and Environment for Programmable Net-
works, http://www.cs.columbia.edu/dcc/asn/

[25] Foundation of Intelligent Physical Agents, http://www.fipa.com

[26] Mobile Agent System Interoperability Facility, Object Management
Group, http://www.omg.org

[27] Jumping Beans, Ad Astra Engineering, Sunnyvale CA,
http://www.jumpingbeans.com

[28] The Mobile Agent List, http://www.informatik.uni-stuttgart.de/
/ipvr/vs/projekte/mole/mal/mal.html

30

