
1

Improved division by invariant integers
Niels Möller and Torbjörn Granlund

Abstract—This paper considers the problem of dividing a
two-word integer by a single-word integer, together with a few
extensions and applications. Due to lack of efficient division
instructions in current processors, the division is performed as a
multiplication using a precomputed single-word approximation
of the reciprocal of the divisor, followed by a couple of adjustment
steps. There are three common types of unsigned multiplication
instructions; we define full word multiplication (umul) which
produces the two-word product of two single-word integers,low
multiplication (umullo) which produces only the least significant
word of the product, and high multiplication (umulhi), which
produces only the most significant word. We describe an algo-
rithm which produces a quotient and remainder using oneumul
and oneumullo. This is an improvement over earlier methods,
since the new method uses cheaper multiplication operations.
It turns out we also get some additional savings from simpler
adjustment conditions. The algorithm has been implementedin
version 4.3 of the GMP library. When applied to the problem
of dividing a large integer by a single word, the new algorithm
gives a speedup of roughly 30%, benchmarked onAMD and Intel
processors in the x8664 family. (FIXME: Mention win even over
a single division instruction with no invariance.)

I. I NTRODUCTION

Integer division instructions are either not present at all
in current microprocessors, or if they are present, they are
considerably slower than the corresponding multiplication
instructions. The situation was similar a decade ago [1],
and the trend has continued so that divisionlatency is now
typically 5-15 times higher than multiplication latency, and
division throughputis up to 50 times worse than multiplication
throughput. Another trend is that branches cost gradually
more, except for branches that the hardware can predict
correctly. But some branches are inherently unpredictable.

Division can be implemented using multiplication, by first
computing an approximate reciprocal, e.g., by Newton iter-
ation, followed by a multiplication that results in a candi-
date quotient. Finally, the remainder corresponding to this
candidate quotient is computed, and if the remainder is too
small or too large, the quotient is adjusted. This procedureis
particularly attractive when the same divisor is used several
times; then the reciprocal need to be computed only once.
(But somewhat surprisingly, a well-tuned Newton reciprocal
followed by multiplication and adjustments wins over the
designated division instructions even for a single non-invariant
division on modern 64-bitPC processors.)

This paper considers the problem of dividing a two-word
number by a single-word number, using a single-word approx-
imate reciprocal. The main contributions are a new algorithm
for division using such an reciprocal, and new algorithms for

N. Möller is with (FIXME: ???) . Email: nisse@lysator.liu.se
T. Granlund is with the School of Conputer Science and Communication,

KTH, Stockholm. Email:tege@nada.kth.se

computing a suitable reciprocal, for 32-bit and 64-bit word
size.

The key idea in our new division algorithm is to compute
the candidate remainder as a single word rather than a double
word, even though it does not quite fit. We then use a fraction
associated with the candidate quotient to resolve the ambiguity.
The new method is more efficient than previous methods for
two reasons.

• Previous methods need oneumulhi and one fullumul.
The new method uses oneumul and oneumullo, and
umullo is a cheaper operation (e.g., onAMD Opteron,
the difference in latency is one cycle, while on Intel Core
2, the difference is three cycles).

• The needed adjustment conditions are simpler.

When the division algorithms in this paper are used as build-
ing blocks for algorithms working with large numbers, our
improvements typically affect the linear term of the execution
time. This is of particular importance for applications using
integers of size up to a few dozen words, e.g., on a 64-bit
CPU, 2048-bit RSA corresponds to computations on 32-word
numbers.

The new algorithm has been implemented in theGMP li-
brary [2]. As an example of the resulting speedup, for division
of a large integer by a single word, the new method gives a
speedup of 31% compared to earlier methods, benchmarked
on AMD Opteron and Intel Core 2.

The outline of this paper is as follows. The rest of this
section defines the notation we use. Section II explains how
the needed reciprocal approximation is defined, computed,
and used. Section III gives the main result, a new method
for dividing a two-word number by a single word, together
with correctness proof and analysis of the probability for the
adjustment steps. Section IV describes a couple of extensions,
primarily motivated by schoolbook division, the most impor-
tant one being a method for dividing a three-word number by
a two-word number. In Sec. V, we consider an algorithm that
can take direct advantage of the new division method: Dividing
a large integer by a single-word. We describe the x8664
implementation of this algorithm using the new method, and
compare it to earlier results. Finally, Sec. VI concludes and
discusses some open problems.

A. Notation and conventions

Let ℓ denote the computer word size, and letβ = 2ℓ denote
the base implied by the word size, and upper-case letters
represent numbers of any size. We use the notationX =
〈xn−1, xn−2, . . . , x0〉 = xn−1β

n−1 + xn−2β
n−2 + · · · + x0,

where then-word integerX is represented by the wordsxi.

2

We use the following multiplication operations:

〈p1, p0〉 ← umul(a, b) = ab Double word product

p0 ← umullo(a, b) = (ab) mod β Low word

p1 ← umulhi(a, b) =

⌊
ab

β

⌋
High word

Our algorithms depend on the existence and efficiency of
these basic multiplication operations, but they do not require
both umul and umulhi. These are common operations in
all processors, and very few processors lack bothumul and
umulhi. (FIXME: Comment on poor multiplication on
sparc?)

In our probability analysis, we use the notation thatP[event]
is the probability of a given event, andEX is the expected
value of a random variableX .

II. D IVISION USING AN APPROXIMATE RECIPROCAL

Consider the problem of dividing a two-word numberU =
〈u1, u0〉 by a single-word numberd, computing the quotient
and remainder

q =

⌊
U

d

⌋
r = U − qd.

Clearly,r is a single-word number. We assume thatu1 < d,
to ensure that also the quotientq fits in a single word. We will
also restrict attention the case thatd is a “normalised” single-
word number, i.e.,β/2 ≤ d < β. This means that the word
d has its most significant bit set. It follows thatu0/d < 2,
and one can get a reasonable quotient approximation fromu1

alone, without consideringu0.
We have1/β < 1/d ≤ 2/β. We represent this using a fixed-

point representation, with a single wordv and an additional
implicit one bit at the most significant end,

1

d
≈

β + v

β2
. (1)

For the border cased = β/2, we force the value to fit in this
representation by using a reciprocal of2/β−1/β2 rather than
the true reciprocal2/β.

We define the precomputed reciprocal ofd as the integer

v =

⌊
β2 − 1

d

⌋
− β.

The constraints ond imply that 0 < v < β, in particular,v is
a single word number. The usefulness ofv comes from Eq. (1)
which implies

U

d
≈ (u1β + u0)

β + v

β2
= u1 +

u1v

β
+

u0

β
+

u0v

β2
. (2)

Since (β + v)/β2 < 1/d, the expression on the right hand
side is upper bounded byq and hence also byβ. Since the
terms on the right hand side are non-negative, the expression
is still upper bounded byq if some of the terms are omitted
or truncated.

(q, r)← DIV 2BY1PI1(〈u1, u0〉, d, v)

1 q ← ⌊vu1/β⌋+ u1 � Candidate quotient (umulhi)
2 〈p1, p0〉 ← qd � umul
3 〈r1, r0〉 ← 〈u1, u0〉 − 〈p1, p0〉 � Candidate remainder
4 while r1 > 0 or r0 ≥ d � (Repeated at most 3 times)
5 do q ← q + 1
6 〈r1, r0〉 ← 〈r1, r0〉 − d
7 return q, r0

Algorithm 1: Simple division using a precomputed reciprocal.

A. Previous methods

The trick of using a precomputed reciprocal to replace
integer division by multiplication is well-known. The simplest
variant is Alg. 1, which uses a quotient approximation based
on the first two terms of Eq. (2).

To see how it works, letU = 〈u1, u0〉 and let q denote
the true quotient⌊U/d⌋. Let q′ denote the candidate quotient
computed at line 1, and letq0 = vu1 mod β denote the low,
ignored, half of the product. LetR′ denote the corresponding
candidate remainder, computed on line 3. Then

R′ = U − q′d

= u0 + u1β −
u1(β + v)− q0

β
d

= u0 +
u1k + q0d

β

< β + 2d.

We see thatR′ ≥ 0, which corresponds toq′ ≤ q. The other
bound,R′ < β + 2d, implies thatq ≤ q′ + 3. SinceR′ may
be larger thanβ, it must be computed as a two-word number
at line 3 and in the loop, at line 5, which is executed at most
three times.

The problem is that in the two-word subtractionU − q′d,
most, but not all, bits in the most significant word cancel.
Hence, we must use the expensiveumul operation rather than
the cheaperumullo.

The quotient approximation can be improved. By checking
if u0 ≥ d, and if so, incrementq′ before computingr′, one
getsR′ < 3d and q′ ≤ q + 2. The method in [1], Sec. 8, is
more intricate, guaranteeing thatR′ < 2d, so thatq′ ≤ q + 1.
However, it still computes the full productq′d, so this method
needs oneumul and oneumulhi.

B. Computing the reciprocal

From the definition ofv, we have

v =

⌊
β2 − 1

d

⌋
− β =

⌊
〈β − 1− d, β − 1〉

d

⌋

so for architectures that provide an instruction for dividing a
two-word number by a single word, that instruction can be
used to compute the reciprocal straightforwardly.

If such a division instruction is lacking or if it is slow, the
reciprocal can be computed using the Newton iteration

xk+1 = xk + xk(1 − xkd). (3)

3

This equation implies that

1− xk+1d = (1− xkd)2. (4)

Consider one iteration, and assume that the accuracy ofxk is
roughlyn bits. Then the desired accuracy ofxk+1 is about2n
bits, and to achieve that, only about2n bits of d are needed in
Eq. (3). Ifxk is represented usingn bits, matching its accuracy,
then the computation of the right hand side yields4n bits. In
a practical implementation, the result should be truncatedto
match the accuracy of2n bits. The resulting error inxk+1 is
the combination of the error according to Eq (4), the truncation
of the result, and any truncation of thed input.

v ← RECIPROCAL WORD(d)

1 d9 ← ⌊2
−55d⌋ � Most significant 9 bits

2 d32 ← ⌊2
−32d⌋ � Most significant 32 bits

3 v0 ← 26⌊(218 − 28)/d9⌋ � By table lookup
4 v1 ← 217v0 − ⌊2

−31v2
0d32⌋ � 2 umullo

5 v2 ← 233v1 − 2⌊2−64v2
1d⌋ � umullo, umulhi

6 v3 ← (4 v2 − ⌊2
−126v2

2d⌋ − 1) mod 264
� 3 umul

7 v4 ← (v3 − ⌊2
−64(v3 + 264 + 1) d⌋) mod 264

� umul
8 return v4

Algorithm 2: Reciprocal computation forβ = 264.

Algorithm 2 gives one variant, forβ = 264. Here, v0 is
represented as 16 bits,v1 as 32 bits,v2 as 64 bits, andv3 and
v4 as 65-bit values where the most significant bit, which is
always one, is implicit.

Theorem 1 (64-bit reciprocal):With β = 264, the outputv
of Alg 2 satisfies0 < β2 − (β + v) d ≤ d.

Proof: We will prove that the errors in each iteration are
bounded as follows:

e0 = 2128 − 249v0d |e0| <
3

4
× 2120 (5)

e1 = 2128 − 233v1d |e1| <
5

8
× 2112 (6)

e2 = 2128 − 2v2d |e2| <

(
5

8

)2

× 296 (7)

e3 = 2128 − (264 + v3) d 0 < e3 < 2d (8)

e4 = 2128 − (264 + v4) d 0 < e4 ≤ d (9)

(FIXME: Skip parts of the proof? Or condense further
some other way?)Each step involves a truncation, and we
let 0 ≤ δk < 1 denote the truncation error in each step. Start
with (5). Let d′ = d− 255d9. We have

v0 = 26((218 − 28)/d9 − δ0)

e0 = 2118 + 2110δ0d9 − 249v0d
′.

From this, we get the upper bound(3/4) × 2120 and lower
bound−(3/4)× 2120.

For (6), letd′ = d− 232d32. We have

v1 = 217v0 − 2−63v2
0(d− d′) + δ2

e1 = 2−128e2
0 + 2−30v2

0dd′ − 233δ2d.

v ← RECIPROCAL WORD(d)

1 d9 ← ⌊2
−23d⌋ � Most significant 9 bits

2 v0 ← 26⌊(218 − 28)/d9⌋ � By table lookup
3 v1 ← 217v0 − 2⌊2−32v2

0d⌋ � umullo, umulhi
4 v2 ← (4 v1 − ⌊2

−62v2
1d⌋ − 1) mod 232

� 3 umul
5 v3 ← (v2 − ⌊2

−32(v2 + 232 + 1) d⌋) mod 232
� umul

6 return v3

Algorithm 3: Reciprocal computation forβ = 232.

We get the upper bound(9217/16384)× 2112 < (5/8)× 2112

and lower bound−297.
For (7), we have

v2 = 233v1 − 2(2−64v2
1d− δ1)

e2 = 2−128e2
1 − 4δ2d

and the upper bound(5/8)2 × 296 and lower bound−266.
For (8), put

v′3 = 4v2 − ⌊2
−126v2

2d⌋+ δ3 − 1

e′3 = 2128 − v′3d = 2−128e2
2 + (1− δ3)d.

(We will see in a moment thatv′3 = 264 + v3, and hence also
e′3 = e3). Then0 < e′3 < (5/8)4 × 264 + d < 262 + d ≤ 2d.
It remains to show that264 ≤ v′3 < 2× 264. The upper bound
follows from e′3 > 0. For the border cased = 264 − 1, one
can verify thatv′3 = 264, and ford ≤ 264 − 2, we get

v′3 =
2128 − e′3

d
≥

2128 − e′3
264 − 2

= 264 +
2× 264 − e3

264 − 2
> 264.

For the final adjustment step, we have

⌊2−64(v3 + 264 + 1)d⌋ = ⌊2−64(2128 − e3 + d)⌋

= 264 + ⌊2−64(d− e3)⌋

=

{
264 d ≥ e3

264 − 1 d < e3

Hence, the effect of the adjustment is to increment the recip-
rocal approximation if and only ife3 > d. The desired bound,
Eq. (9), follows.

Algorithm 3 is the corresponding algorithm forβ = 232.
The correctness proof is analogous.
Remarks:

• The final step in the algorithm is not a Newton iteration,
but an adjustment step which adds zero or one to the
reciprocal approximation.

• To ensure that the needed adjustment is at most one, the
choice of initial value is crucial. The 64-bit algorithm
works because|e0| < (3/4) × 2120, and (3/4)8 < 1/2
(with some margin to accommodate for truncation errors).
The correctness of the 32-bit algorithm is tighter, with one
squaring less. It works because also(3/4)4 < 1/2 with
a sufficient margin.1

1And unlike the 64-bit variant, exhaustively testing the 32-bit algorithm
does not require extreme patience or computing resources.

4

(q, r)← DIV 2BY1PI1(〈u1, u0〉, d, v)

1 〈q1, q0〉 ← vu1 � umul
2 〈q1, q0〉 ← 〈q1, q0〉+ 〈u1, u0〉
3 q1 ← (q1 + 1) mod β
4 r ← (u0 − q1d) mod β � umullo
5 if r ≥ q0 � Unpredictable condition
6 then q1 ← (q1 − 1) mod β
7 r ← (r + d) mod β
8 if r ≥ d � Unlikely condition
9 then q1 ← q1 + 1

10 r ← r − d
11 return q1, r

Algorithm 4: New division method.

• The algorithm can most likely be improved further. In
the Newton iterationx + x(1− xd), there is cancellation
in the subtraction(1 − xd), since the upper part ofxd
are all one bits. But Alg. 2 computes each iteration as
2x−x2d, and can therefore not exploit this cancellation.

• The execution time of Alg. 2 is roughly 50 cycles on
AMD Opteron, and 72 cycles on Intel Core 2.

III. D IVIDING A TWO -WORD NUMBER BY A SINGLE WORD

To improve performance of division, it would be nice if we
could get away with usingumullo for the multiplicationq′d
in Alg. 1 (line 2), rather than a fullumul. Then the candidate
remainderU − q′d will be computed only moduloβ, even
though the full range of possible values is too large to be
represented by a single word. We will need some additional
information to be able to make a correct adjustment. It turns
out that this is possible, if we keep the fractional part of
the quotient approximation around. Intuitively, we expectthe
candidate remainder to be roughly proportional to the quotient
fraction.

A. A new division algorithm

Our new and improved method is given in Alg. 4. It is based
on the following theorem.

Theorem 2:Assumeβ/2 ≤ d < β, 0 ≤ u1 < d, and
0 ≤ u0 < β. Put v = ⌊(β2 − 1)/d⌋ − β. Form the two-word
number

〈q1, q0〉 = (β + v)u1 + u0.

Form the candidate quotient and remainder

q̃ = q1 + 1

r̃ = 〈u1, u0〉 − q̃d.

Then r̃ satisfies
c− β ≤ r̃ < c

with
c = max(β − d, q0).

Hencer̃ is uniquely determined giveñr mod β, d andq0.

Proof: We have(β + v) d = β2 − k, where1 ≤ k ≤ d.
Substitution in the expression for̃r gives

r̃ = u1β + u0 − q1d− d =
u1k + u0(β − d) + q0d

β
− d.

For the lower bound, we clearly havẽr ≥ −d. We also have

r̃ ≥
q0d

β
− d = (q0 − β)

d

β
> q0 − β.

It follows that

r̃ ≥ max(−d, q0 − β) = c− β.

For the upper bound, we have

r̃ <
d2 + β(β − d) + q0d

β
− d

=
β − d

β
(β − d) +

d

β
q0 ≤ max(β − d, q0) = c

where the final inequality follows from recognising the ex-
pression as a convex combination.
Remarks:

• The lower bound̃r = c − β is attained if and only if
U = 0. Thenq1 = q0 = 0, c = β − d, and r̃ = −d.

• The upper bound̃r = c − 1 is attained if and only if
d = β/2, u1 = β/2−1, andu0 = β−1. Thenv = β−1,
q1 = β − 2, q0 = c = β/2, and r̃ = β/2− 1.

In Alg. 4, denote the value computed at line 4 byr′. Then
r′ = r̃ mod β. A straightforward application of Theorem 2
would compare this value toc. In Alg. 4, we avoid computing
c explicitly, and instead comparer′ to q0. To see why this still
gives the correct result, consider two cases:

• Assumer̃ ≥ 0. Thenr′ = r̃ < c. Hence, whenever the
condition at line 5 is true, we haver′ < β−d, so that the
addition at the next line does not overflow. The second
adjustment condition, at line 8, reduces the remainder to
the proper range0 ≤ r < d.

• Otherwise,̃r < 0. Thenr′ = r̃ + β ≥ c. Sincer′ ≥ q0,
the condition at line 5 is true, and sincer′ ≥ β − d, the
addition overflows. After the first adjustment, we have a
remainder in the proper range. The condition at line 8 is
false.

Of the two adjustment conditions, the first one is inherently
unpredictable. For random inputs, the probability is roughly
50% for either outcome. This means that branch prediction
will not be effective. For good performance, the first adjust-
ment must be implemented in a branch-free fashion, e.g., using
conditional move instructions. The second condition,r′ ≥ d,
is true with very low probability, and can be handled by a
predicated branch or using conditional move.

B. Probability of second adjustment step

In this section, we analyse the probability of the second
adjustment step (line 8 in Alg. 4), and substantiate our claim
that the second adjustment is unlikely.

We will treat r̃ as a random variable, but we first need to
investigate for which values of̃r that the second adjustment
step is done. There are two cases:

5

• If r̃ ≥ d, then r̃ < c and d ≥ β − d imply that r̃ < q0.
The first adjustment is skipped, the second is done.

• If r̃ ≥ q0, then r̃ < c implies thatr̃ < β − d and d ≤
r̃ + d < β. The first adjustment is done, then undone by
the second adjustment.

The inequalities̃r ≥ d andr̃ ≥ q0 are thus mutually exclusive,
the former possible only whenq0 > d and the latter possible
only whenq0 < β − d.

One example of each kind, forβ = 25 = 32:

U d q r v k q̃ q0 r̃
414 18 23 0 24 16 22 30 18
504 18 28 0 24 16 28 0 0

To find the probabilities, in this section,we treatr̃ as a
random variable. Consider the expression forr̃,

r̃ =
u1k + u0(β − d) + q0d

β
− d.

We assume we have a fixedd = ξβ, with 1/2 ≤ ξ < 1,
and consideru1 andu0 as independent uniformly distributed
random variables in the ranges0 ≤ u1 < d and0 ≤ u0 < β.
We also make the simplifying assumptions thatk andq0 are
independent and uniformly distributed, in the ranges0 < k ≤
d and0 ≤ q0 < β, and that all these variables arecontinuous
rather than integer-valued.2

Theorem 3:Assume that1/2 ≤ ξ < 1, thatu1, u0, k andq0

are independent random variables, continuously and uniformly
distributed with ranges0 ≤ u1, k ≤ ξβ, 0 ≤ u0, q0 ≤ β. Let

r̃ =
u1k + u0(1− ξ)β + q0ξβ

β
− ξβ.

Then

P[r̃ ≥ ξβ or r̃ ≥ q0]

=
(2 − 1/ξ)3

6(1− ξ)2
log

2− 1/ξ

ξ
+

1

6

+ (1− ξ)

(
−

1

18
+

1

2ξ
−

11

12ξ2
+

11

36ξ3

)
. (10)

Proof: Define the stochastic variables

X =
u1k

ξβ2
R =

u1k + u0(1− ξ)β

ξβ2
Q =

q0

β
.

Now,
r̃

ξβ
= R + Q− 1.

By assumption,Q is uniformly distributed, whileR has a more
complicated distribution. Conditioning onQ = s, we get the

2These assumptions are justified for large word-size. Strictly speaking, with
fixed d, the variablek is of course not random at all. To make this argument
strict, we would have to treatd as a random variable with values in a small
range aroundξβ, e.g., uniformly distributed in the rangeξβ ± β3/4, and
consider the limit asβ → ∞. Then the modulo operations involved in
q0 andk make these variables behave as almost independent and uniformly
distributed.

 0

 0.5

 1

 1.5

 2

 2.5

 0.5 0.6 0.7 0.8 0.9 1

P
ro

ba
bi

lit
y

[%
]

ξ

Fig. 1. Probability of the unlikely adjustment step, as a function of the ratio
ξ = d/β.

probabilities

P[r̃ ≥ ξβ] =

∫ 1

3−ξ−1/ξ

P[R ≥ 2− s] ds

=

∫ ξ+1/ξ−2

0

P[R ≥ 1 + s] ds

P[r̃ ≥ q0] =

∫ 1−ξ

0

P[R ≥ 1 + (1/ξ − 1)s] ds

=
1

1/ξ − 1

∫ ξ+1/ξ−2

0

P[R ≥ 1 + s] ds.

Adding the probabilities (recall that the events are mutually
exclusive), we get the probability of adjustment as

1

1− ξ

∫ ξ+1/ξ−2

0

P[R ≥ 1 + s] ds. (11)

We next need the probabilitiesP[R ≥ s] for 1 ≤ s ≤
ξ + 1/ξ − 1. By somewhat tedious calculations, we find

P [X ≤ s] =
βs

d

(
1− log

βs

d

)

P[R ≥ s] =
ξ

1− ξ
Emax(0, X − (s− (1/ξ − 1)))

= −
(s + 1− 1/ξ)2

2(1− ξ)
log

s + 1− 1/ξ

ξ

+
ξ2 − 4(s + 1− 1/ξ) + 3(s + 1− 1/ξ)2

4(1− ξ)
,

where the latter equation is valid only fors in the interval
of interest. Substituting in Eq. (11) and integrating yields
Eq. (10), which completes the proof.

In Fig. 1, the adjustment probability of Eq. 10 is plotted as
a function of the ratioξ = d/β. This is a rapidly decreasing
function, with maximum value forξ = 1/2, which gives the
worst case probability of1/36 for d close toβ/2. This curve
is based on the assumptions on continuity and independence
of the random variables. For a fixedd and word size, the
adjustment probability for randomu1 andu0 will deviate some
from this continuous curve. In particular, the border cased =

6

β/2 actually gives an adjustment probability of zero, so it is
not the worst case.

(FIXME: Comment on empirical data? Maybe add to
plot?)

IV. EXTENSIONS FOR SCHOOLBOOK DIVISION

The key idea in Alg. 4 can be applied to other small
divisions, not just two-word divided by single word (denoted
“2/1 division”). This leads to a family of algorithms, all which
compute a quotient approximation by multiplication by a
precomputed reciprocal, then omit computing the high, almost
cancelling, part of the corresponding candidate remainder,
and finally, they perform an adjustment step using a fraction
associated with the quotient approximation.

We will focus on extensions that are useful for schoolbook
division with a large divisor. The most important extension
is 3/2-division, i.e., dividing a three-word number by a two-
word number. This is described next. Later on in this section,
we will also look into variations that produce more than one
quotient word.

A. Dividing a 3-word number by a 2-word number

For schoolbook division with a large divisor, the simplest
method is to compute one quotient word at a time by divid-
ing the most significant two words of the dividend by the
single most significant word of the divisor, which is a direct
application of Alg. 4. Assuming the divisor is normalised, the
resulting quotient approximation is at most two units too large.
Next, the corresponding remainder candidate is computed and
adjusted if necessary. A drawback with this method is that
the probability of adjustment is significant, and that each
adjustment has to do an addition or a subtraction of large
numbers. To improve performance, it is preferable to compute
a quotient approximation based on one more word of both
dividend and divisor, three words divided by two words. With
a normalised divisor, the quotient approximation is at mostone
off, and the probability of error is small. For more details on
the schoolbook division algorithm, see [3, Sec. 4.3.1, Alg.D]
and [4].

We therefore consider the following problem: Divide
〈u2, u1, u0〉 by 〈d1, d0〉, computing the quotientq and remain-
der 〈r1, r0〉. To ensure thatq fits in a single word, we assume
that 〈u2, u1〉 < 〈d1, d0〉, and like for 2/1 division, we also
assume that the divisor is normalised.

Algorithm 5 is a new algorithm for 3/2 division. The adjust-
ment condition at line 7 is inherently unpredictable, and should
therefore be implemented in a branch-free fashion, while the
second one, at line 10, is true with very low probability. The
algorithm is similar in spirit to Alg. 4. The correctness of the
algorithm follows from the following theorem.

Theorem 4:Consider the division of the three-word number
U = 〈u2, u1, u0〉 by the two-word numberD = 〈d1, d0〉.
Assume thatβ/2 ≤ d1 < β and 〈u2, u1〉 < 〈d1, d0〉 Put

v =

⌊
β3 − 1

D

⌋
− β

q, 〈r1, r0〉 ← DIV 3BY2PI1(〈u2, u1, u0〉, 〈d1, d0〉, v)

1 〈q1, q0〉 ← vu2 � umul
2 〈q1, q0〉 ← 〈q1, q0〉+ 〈u2, u1〉
3 r1 ← (u1 − q1d1) mod β � umullo
4 〈t1, t0〉 ← d0q1 � umul
5 〈r1, r0〉 ← (〈r1, u0〉 − 〈t1, t0〉 − 〈d1, d0〉) mod β2

6 q1 ← (q1 + 1) mod β
7 if r1 ≥ q0

8 then q1 ← (q1 − 1) mod β
9 〈r1, r0〉 ← (〈r1, r0〉+ 〈d1, d0〉) mod β2

10 if 〈r1, r0〉 ≥ 〈d1, d0〉 � Unlikely condition
11 then q1 ← q1 + 1
12 〈r1, r0〉 ← 〈r1, r0〉 − 〈d1, d0〉
13 return q1, 〈r1, r0〉

Algorithm 5: Dividing a three-word number by a two-word
number, using a single-word precomputed reciprocal.

which is in the range0 ≤ v < β. Form the two-word number

〈q1, q0〉 = (β + v)u2 + u1.

Form the candidate quotient and remainder

q̃ = q1 + 1

r̃ = 〈u2, u1, u0〉 − q̃ 〈d1, d0〉.

Then r̃ satisfies

c− β2 ≤ r̃ < c

with

c = max(β2 −D, q0β).

Proof: We have(β + v)D = β3−K, for someK in the
range1 ≤ K ≤ D. Substitution gives

r̃ = U − q̃D

=
u2K + u1(β

2 −D) + u0β + q0D

β
−D.

The lower bounds̃r ≥ −D and r̃ > q0β − β2 follow in the
same way as in the proof of Theorem 2, proving the lower
bound r̃ ≥ c − β2. For the upper bound, the border cases
makes the proof more involved. We need to consider several
cases.

• If u2 ≤ d1 − 1, then

r̃ <
(d1 − 1)D + (β − 1)(β2 −D) + β2 − βD + q0D

β

=
(β2 −D)2 + q0βD − d0D

β2

=
β2 −D

β2
(β2 −D) +

D

β2
q0β −

d0D

β2

≤ c.

7

v ← RECIPROCAL WORD 3BY2(〈d1, d0〉)

1 v ← RECIPROCAL WORD(d1)
� We haveβ2 − d1 ≤ (β + v) d1 < β2.

2 p← d1v mod β � umullo
3 p← (p + d0) mod β
4 if p < d0 � Equivalent to carry out
5 then v ← v − 1
6 if p ≥ d1

7 then v ← v − 1
8 p← p− d1

9 p← (p− d1) mod β
� We haveβ2 − d1 ≤ (β + v) d1 + d0 < β2.

10 〈t1, t0〉 ← vd0 � umul
11 p← (p + t1) mod β
12 if p < t1 � Equivalent to carry out
13 then v ← v − 1
14 if 〈p, t0〉 ≥ 〈d1, d0〉
15 then v ← v − 1
16 return v

Algorithm 6: Computing the reciprocal needed for
DIV 3BY2PI1; a single word reciprocal based on a two-
word divisor.

• If u2 = d1, then u1 ≤ d0 − 1, by assumption. In this
case, we get

r̃ <
d1D + (d0 − 1)(β2 −D) + β2 − βD + q0D

β

=
β2 −D

β2
(β2 −D) +

D

β2
q0β

+
(β − d0)

(
(β + 1)D − β3

)

β2

≤ c +
(β − d0)

(
(β + 1)D − β3

)

β2
.

Under the additional assumption thatD ≤ β(β − 1), we
get (β + 1)D− β3 ≤ −β < 0, and it follows that̃r < c.

• Finally, the remaining border case isu2 = d1 and D >
β(β − 1). We then haveu2 = d1 = β − 1, 0 ≤ u1 < d0,
and v = 0 since (β3 − 1)/D − β < 1. It follows that
q1 = u2 = β − 1. We get

r̃ = u− βD = β (u1 − d0) + u0 < 0 < c.

Hence the upper bound̃r < c is valid in all cases.

(FIXME: Try to simplify, by doing the borderline cases
first?)

B. Computing the reciprocal for 3/2 division

The reciprocal needed by Alg. 5, even though still a single
word, is slightly different from the reciprocal that is needed by
Alg 4. To compute the needed reciprocal, one can use Alg. 2
or Alg. 3 (depending on word size) to compute the reciprocal
of the most significant wordd1, followed by a couple of
adjustment steps to take into account the least significant word
d0. We suggest the following strategy:

Start with the initial reciprocalv, based ond1 only, and
the corresponding product(β +v) d1β, where only the middle
word is represented explicitly (the high word isβ−1, and the
low word is zero). We then add firstβd0 and thenvd0 to this
product. For each addition, if we get a carry out, we cancel
that carry by appropriate subtractions ofd1 andd0 to get an
underflow. The details are given in Alg. 6.
Remark: The productd1v mod β, computed in line 2, may
be available cheaply, without multiplication, from the inter-
mediate values used in the final adjustment step ofRECIPRO-
CAL WORD (Alg. 2 or Alg. 3).

C. Larger quotients

The basic algorithms for 2/1 division and 3/2 division can
easily be extended in two ways.

• One can substitute double-words or other fixed-size units
for the single words in Alg. 4 and Alg. 5. This way, one
can construct efficient algorithms that produce quotients
of two or more words. E.g., with double-word units, we
get algorithms for division of sizes 4/2 and 6/4.

• In any of the algorithms constructed as above, one can
fix one or more of the least significant words of both
dividend and divisor to zero. This gives us algorithms
for division of sizes such as 3/1 and 5/3 (and applying
this procedure to 3/2 would recover the good old 2/1
division).

Details and applications for some of these variants are de-
scribed in [4].

V. CASE STUDY: X86 64 IMPLEMENTATION OF n/1
DIVISION

Schoolbook division is the main application of 3/2 division,
as was described briefly in the previous section. We now turn
to a more direct application of 2/1 division using Alg. 4.

In this section, we describe our implementation of
DIV NBY1, dividing a large number by a single word number,
for current processors in the x8664 family. We use condi-
tional move (cmov) to avoid branches that are difficult to
handle efficiently by branch-prediction. Besidescmov, the
most crucial instructions used aremul, imul, add, adc,
sub andlea. Detailed latency and throughput measurements
of these instructions, for 32-bit and 64-bit processors in the
x86 family, are given in [5]. When discussing the details
of instruction timing, we focus primarily onAMD Opteron.
Results are provided for bothAMD Opteron and Intel Core 2.

A. Dividing a large integer by a single word

Consider division of ann-word numberU by a single word
numberd. The result of the division is ann-word quotient
and a single-word remainder. This can be implemented by
repeatedly replacing the two most significant words ofU
by their single-word remainder modulod, and recording the
corresponding quotient word [3, Sec. 4.3.1, exercise 16]. The
variant shown in Alg. 7 computes a reciprocal ofd (and hence
requires thatd is normalised), and applies our new 2/1 division
algorithm in each step.

8

(Q, r)← DIV NBY1(U, d)

In: U = 〈un−1 . . . u0〉
Out: Q = 〈qn−1 . . . q0〉.

1 v ← RECIPROCAL WORD(d)
2 r← 0
3 for j = n− 1, . . . , 0
4 do (qj , r)← DIV 2BY1PI1(〈r, uj〉, d, v)
5 return (Q, r)

Algorithm 7: Dividing a large integerU = 〈un−1 . . . u0〉 by a
normalised single-word integerd.

loop:
mov (np, un, 8), %rax
div d
mov %rax, (qp, n, 8)
dec un
jnz loop

Example 1: Basic division loop using thediv instruction,
running at 71 cycles per iteration onAMD Opteron, and 116
cycles on Intel Core 2. Note thatrax andrdx are implicit
input and output arguments to thediv instruction.

To use Alg. 7 directly,d must be normalised. To also handle
unnormalised divisors, we select a shift countk such that
β/2 ≤ 2kd < β. Alg. 7 can then be applied to the shifted
operands2kU and 2kd. The quotient is unchanged by this
transformation, while the resulting remainder has to be shifted
k bits right at the end. Shifting ofU can be done on the fly
in the main loop. In the code examples, registercl holds the
normalisation shift countk.

B. Näıve implementation

The main loop of an implementation in x8664 assembler is
shown in Example. 1. Note that thediv instruction in the x86
family appear to be tailor-made for this loop: This instructions
takes a divisor as the explicit argument. The two-word input
dividend is placed with the most significant word in therdx
register and the least significant word in therax register. The
output quotient is produced inrax and the remainder inrdx.
No other instruction in the loop need to touchrdx as the
remainder is produced by each iteration and consumed in the
next.

However, the dependency between iterations, via the re-
mainder in rdx, means that the execution time is lower
bounded by the latency of thediv instruction, which is
71 cycles onAMD Opteron [5] (and even longer, 116 cycles,
on Intel Core 2). Thanks to parallelism and out-of-order
execution, the rest of the instructions are executed while
waiting for the result from the division. This loop is more than
an order of magnitude slower than the loop for multiplying a
large number by a single-word number.

C. Old division method

The earlier division method from [1] can be implemented
with the main loop in Example 2. The dependency between op-

loop: mov (up,un,8), %rdx
shld %cl, %rdx, %r14
lea (d,%r14), %r12
bt $63, %r14
cmovnc %r14, %r12

0 0 mov %rax, %r10
0 0 adc $0, %rax
1 2 mul dinv
5 8 add %r12, %rax

mov d, %rax
6 10 adc %r10, %rdx
7 12 not %rdx
8 13 mov %rdx, %r12
8 13 mul %rdx

12 21 add %rax, %r14
13 23 adc %rdx, %r10
14 25 sub d, %r10
13 22 lea (d,%r14), %rax
14 26 cmovnc %r14, %rax

AMD Intel sub %r12, %r10
mov (up,un,8), %r14
mov %r10, 8(qp,un,8)
dec un
jnz loop

Example 2: Previous method using a precomputed reciprocal,
running at 17 cycles per iteration onAMD Opteron, and 32
cycles on Intel Core 2.

erations, via therax register, is still crucial to understand the
performance. Consider the sequence of dependent instructions
in the loop, from the first use ofrax until the output value of
the iteration is produced. This is what we call therecurrency
chainof the loop. The assembler listing is annotated with cycle
numbers, forAMD Opteron and Intel Core 2. We let cycle 0 be
the cycle when the first instructions on the recurrency chain
starts executing, and the following instructions in the chain
are annotated with the cycle number of the earliest cycle the
instruction can start executing, taking its input dependencies
into account.

To create the annotations, one needs to know the latencies
of the instructions. Most arithmetic instructions, including
cmov andlea have a latency of one cycle. The crucialmul
instruction has a latency of four cycles until the low half of
the product is available inrax, and one more cycle until the
high half is available inrdx. Theimul instructions, which
produces the low half only, also has a latency of four cycles.
These numbers are forAMD , the latencies are slightly longer
on Intel Core 2 (5 cycles forimul and 8 formul). See [5]
for extensive empirical timing data.

Using these latency figures, we find that the latency of the
recurrency chain in Example 2 is 15 cycles. This is a lower
bound on the execution time. It turns out that the loop runs in
17 cycles per iteration; the instructions not on the recurrency
chain are mostly scheduled for execution in parallel with the
recurrency instructions, and there’s plenty of time, 8 cycles,
when theCPU is otherwise just waiting for the results from
the multiplication unit. This is a four time speedup compared

9

loop: nop
mov (up,un,8), %r10

0 0 lea 1(%rax), %r11
shld %cl, %r10, %rbp

0 0 mul dinv
4 8 add %rbp, %rax
5 10 adc %r11, %rdx

mov %rax, %r11
mov %rdx, %r13

6 12 imul d, %rdx
10 20 sub %rdx, %rbp

mov d, %rax
11 21 add %rbp, %rax
11 21 cmp %r11, %rbp
12 22 cmovb %rbp, %rax

AMD Intel adc $-1, %r13
cmp d, %rax
jae fix

ok: mov %r13, (qp)
sub $8, qp
dec un
mov %r10, %rbp
jnz loop
jmp done

fix: sub d, %rax
inc %r13
jmp ok

done:

Example 3: Division code (fromGMP-4.3) with the new
division method, based on Alg. 4. Running at 13 cycles per
iteration onAMD Opteron, and 24.5 cycles on Intel Core 2.

to the 71-cycle loop based on thediv instruction. For Intel
Core 2, the latency if the recurrency chain is 28 cycles, while
the actual running time is 32 cycles per iteration.

D. New division method

The main loop of an implementation of the new division
method is given in Example 3. Annotating the listing with
cycle numbers in the same way, we see that the latency of the
recurrency chain is 13 cycles. Note that the rarely taken branch
does not belong to the recurrency chain. The loop actually also
runs at 13 cycles per iteration; all the remaining instructions
are scheduled for execution in parallel with the recurrency
chain.3 For Intel Core 2, the latency of the recurrency chain
is 24 cycles, with an actual running time of 24.5 cycles per
iteration.

Comparing the old and the new method, first make the
conservative assumption that all the loops can be tuned to get
their running times down to the respective latency bounds. We
then get a speedup of 15% onAMD Opteron and 17% on Intel

3It’s curious that if thenop instruction at the top of the loop is removed,
the loop runs one cycle slower. It seems likely that similar random changes
to the instruction sequence in Example 2 can reduce its running time by one
or even two cycles, to reach the lower bound of 15 cycles.

Implementation Recurrency chain latency
and real cycle counts

AMD Opteron Intel Core 2
Naı̈vediv loop (Ex. 1) 71 71 116 116
Old method (Ex. 2) 15 17 28 32
New method (Ex. 3) 13 13 24 24.5

TABLE I
SUMMARY OF THE LATENCY OF THE RECURRENCY CHAIN, AND ACTUAL

CYCLE COUNTS, FOR TWO X86 64 PROCESSORS. THE LATENCY NUMBERS

ARE LOWER BOUNDS FOR THE ACTUAL CYCLE COUNTS.

Core 2. If we instead compare actual cycle counts, we see a
speedup of 31% on both Opteron and Core 2. On Opteron,
we gain one cycle from replacing one of themul instructions
by the fasterimul, the other cycle shaved off the recurrency
chain are due to the simpler adjustment conditions.

In this application, the code runs slower on Intel Core 2
than onAMD Opteron. The IntelCPU loses some cycles due
to higher latencies for multiplication and carry propagation,
resulting in a higher overall latency of the recurrency chain.
And then it loses some additional cycles due to the fact that
the code was written and scheduled with Opteron in mind.

VI. CONCLUSIONS AND FURTHER WORK

We have described and analysed a new algorithm for
dividing a two-word number by a single-word number (“2/1”-
division). The key idea was that when computing a candidate
remainder where the most significant word almost cancels, we
omit computing the most significant word. To enable correct
adjustment of the quotient and the remainder, we work with a
slightly more precise quotient approximation and an associated
fractional word.

Like previous methods, we compute the quotient via an
approximate reciprocal of the remainder. We describe new,
more efficient, algorithms for computing this reciprocal, for
the most common cases of a word size of 32 or 64 bits.
These algorithms are pretty good, but they can most likely
be improved further.

The new algorithm for 2/1 division directly gives a speedup
of roughly 30% on current processors in the x8664 family,
for the application of dividing a large integer by a single word.
It is curious that on these processors, the combination of our
reciprocal algorithm (Alg. 2) and division algorithm (Alg.4)
is significantly faster than the built in assembler instruction
for 2/1 division. This indicates that the algorithms may be of
interest for implementation inCPU microcode.

We have also described a couple of extensions of the
basic algorithm, primarily to enable more efficient schoolbook
division with a large divisor.

Most of the algorithms we describe have been implemented
in the GMP library [2].

ACKNOWLEDGEMENTS

(FIXME: Thanks to Stephan Tolksdorf, Bj örn Terelius,
any other?)

10

REFERENCES

[1] T. Granlund and P. L. Montgomery, “Division by invariantintegers using
multiplication,” in Proceedings of the SIGPLAN PLDI’94 Conference,
June 1994.

[2] T. Granlund, “GNU multiple precision arithmetic library, version 4.3,”
May 2009, http://gmplib.org/.

[3] D. E. Knuth,Seminumerical Algorithms, 3rd ed., ser. The Art of Computer
Programming. Reading, Massachusetts: Addison-Wesley, 1998, vol. 2.

[4] T. Granlund and N. Möller, “Division of integers large and small,” August
2009, to appear.

[5] T. Granlund, “Instruction latencies and throughput forAMD and Intel
x86 processors,” 2009, http://gmplib.org/∼tege/x86-timing.pdf.

