Improved division by invariant integers

Niels Moller and Torbjorn Granlund

Abstract—This paper considers the problem of dividing a
two-word integer by a single-word integer, together with a ew
extensions and applications. Due to lack of efficient divish
instructions in current processors, the division is perfomed as a
multiplication using a precomputed single-word approximéion
of the reciprocal of the divisor, followed by a couple of adjstment
steps. There are three common types of unsigned multiplicain
instructions; we define full word multiplication (unul) which
produces the two-word product of two single-word integers,Jow
multiplication (urnul | 0) which produces only the least significant
word of the product, and high multiplication (urrul hi), which
produces only the most significant word. We describe an algo-
rithm which produces a quotient and remainder using oneurrul
and oneunul | 0. This is an improvement over earlier methods,
since the new method uses cheaper multiplication operatian
It turns out we also get some additional savings from simpler
adjustment conditions. The algorithm has been implementedn
version 4.3 of thegmP library. When applied to the problem
of dividing a large integer by a single word, the new algorithm
gives a speedup of roughly 30%, benchmarked oamb and Intel
processors in the x8664 family. (FIXME: Mention win even over
a single division instruction with no invariance.)

I. INTRODUCTION

computing a suitable reciprocal, for 32-bit and 64-bit word
size.

The key idea in our new division algorithm is to compute
the candidate remainder as a single word rather than a double
word, even though it does not quite fit. We then use a fraction
associated with the candidate quotient to resolve the anthig
The new method is more efficient than previous methods for
two reasons.

« Previous methods need ooeul hi and one fullurul .
The new method uses onerul and oneunul | o, and
urrul | o is a cheaper operation (e.g., avp Opteron,
the difference in latency is one cycle, while on Intel Core
2, the difference is three cycles).

« The needed adjustment conditions are simpler.

When the division algorithms in this paper are used as build-
ing blocks for algorithms working with large numbers, our
improvements typically affect the linear term of the exémut
time. This is of particular importance for applicationsnggi
integers of size up to a few dozen words, e.g., on a 64-bit
CPU, 2048-bitRSA corresponds to computations on 32-word
numbers.

Integer division instructions are either not present at all The new algorithm has been implemented in ther li-
in current microprocessors, or if they are present, they_a(g@ary [2]. As an example of the resulting speedup, for davisi
considerably slower than the corresponding multiplicatioys 4 |arge integer by a single word, the new method gives a
instructions. The situation was similar a decade ago [J:Jpeedup of 31% compared to earlier methods, benchmarked

and the trend has continued so that divislatencyis now
typically 5-15 times higher than multiplication latencyjca

division throughputis up to 50 times worse than multiplication

throughput. Another trend is that branches cost gradu

more, except for branches that the hardware can pre

on AMD Opteron and Intel Core 2.
The outline of this paper is as follows. The rest of this
ection defines the notation we use. Section Il explains how
e needed reciprocal approximation is defined, computed,
#d used. Section III gives the main result, a new method

correctly. But some branches are inherently unpredictable for dividing a two-word number by a single word, together

Division can be implemented using multiplication, by firs{N

ith correctness proof and analysis of the probability foe t

computing an approximate reciprocal, e.g., by Newton itef; . siment steps. Section IV describes a couple of extesisio

ation, followed by a multiplication that results in a candi
date quotient. Finally, the remainder corresponding t® th[|
candidate quotient is computed, and if the remainder is a0y,
small or too large, the quotient is adjusted. This procedkire
particularly attractive when the same divisor is used sdve

primarily motivated by schoolbook division, the most impor
ant one being a method for dividing a three-word number by
o-word number. In Sec. V, we consider an algorithm that
can take direct advantage of the new division method: Dingjdi

b large integer by a single-word. We describe the 6836

times; then the reciprocal need to be computed only onGg 1o mentation of this algorithm using the new method, and

(But somewhat surprisingly, a well-tuned Newton redpmc%ompare it to earlier results. Finally
followed by multiplication and adjustments wins over th%I ' ’

designated division instructions even for a single noraiiant
division on modern 64-bipC processors.)

This paper considers the problem of dividing a two-word
number by a single-word number, using a single-word appro’Ql

Sec. VI concluded an
iscusses some open problems.

Notation and conventions

imate reciprocal. The main contributions are a new algorith | et ¢ denote the computer word size, andfet 2¢ denote
for division using such an reciprocal, and new algorithms fghe hase implied by the word size, and upper-case letters

N. Mdller is with (FIXME: ??7?). Email: ni sse@ysator.liu.se
T. Granlund is with the School of Conputer Science and Conication,
KTH, Stockholm. Emailt ege@ada. kt h. se

represent numbers of any size. We use the notalion=
(Tn—1,Tn—2,...,T0) = Tn_18" ' + Tn_23" 2 + -+ + 20,
where then-word integerX is represented by the words.

We use the following multiplication operations: (q,7) — DIV2BY1PIL({u1, uo), d, v)

(pr, po) — umul (a,b) = ab Double word product 1 g« |vu1/B] +u1 > Candidate quotientugrul hi)
11 0(a,b) = (ab) mod B L d P1Po) — gd > umul
po < umul I o(a,b) = (ab) mod 3 Low wor 3 (ri,m0) < (u1,u0) — (p1,po) > Candidate remainder
p1 — umul hi (a,b) = V_bJ High word 4 whiler; >00rrg>d > (Repeated at most 3 times)
’ B 5 doge—gq+1
(r1,7r0) <= (r1,m0) — d

Our algorithms depend on the existence and efficiency gf
these basic multiplication operations, but they do not irequ
both urmul and umul hi . These are common operations i
all processors, and very few processors lack hatinl and
urrul hi . (FIXME: Comment on poor multiplication on
sparc?)

In our probability analysis, we use the notation thgvent
is the probability of a given event, afd X is the expected
value of a random variablé&.

return g, rg

r)Algorithm 1: Simple division using a precomputed recipioca

A. Previous methods

The trick of using a precomputed reciprocal to replace
integer division by multiplication is well-known. The sirest
variant is Alg. 1, which uses a quotient approximation based
on the first two terms of Eq. (2).

[I. DIVISION USING AN APPROXIMATE RECIPROCAL To see how it works, lel/' = (u;,up) and letq denote
) L the true quotientU/d|. Let ¢’ denote the candidate quotient
Consider the problem of dividing a two-word numbér= computed at line 1, and let, = vu; mod 3 denote the low,

(u1,uo) by a single-word numbed, computing the quotient jgnored, half of the product. Lek’ denote the corresponding

and remainder candidate remainder, computed on line 3. Then
q:{%J r=U-—qd R'=U-qd
U +v)—
.) = uyg + Ulﬁ _ M d
Clearly,r is a single-word number. We assume that< d, B
to ensure that also the quotienfits in a single word. We will = ug + uik + qod
also restrict attention the case thbis a “normalised” single- B
word number, i.e.3/2 < d < (. This means that the word < B+ 2d.

d has its most significant bit set. It follows that/d < 2,
and one can get a reasonable quotient approximation from
alone, without consideringg.

We havel /g < 1/d < 2//3. We represent this using a fixed-
point representation, with a single wordand an additional

We see that?’ > 0, which corresponds t@’ < ¢. The other
bound,R’ < 8+ 2d, implies thatg < ¢’ + 3. Since R’ may
be larger thans, it must be computed as a two-word number
at line 3 and in the loop, at line 5, which is executed at most

implicit one bit at the most significant end three times. . . .
' The problem is that in the two-word subtractiéh— ¢'d,
1 B+4v most, but not all, bits in the most significant word cancel.
d ~ B2 1) Hence, we must use the expensiveul operation rather than

the cheapeumul | o.
For the border casé = (3/2, we force the value to fit in this The quotient approximation can be improved. By checking
representation by using a reciprocalXf3 — 1/ rather than if 4, > d, and if so, incremeny’ before computing’, one
the true reciproca2/ 3. getsR’ < 3d andq < q + 2. The method in [1], Sec. 8, is
We define the precomputed reciprocalds the integer more intricate, guaranteeing thRf < 2d, so thatq’ < g+ 1.
However, it still computes the full produgtd, so this method

2
v = V d_ 1J —B. needs onainul and oneunul hi .

The constraints od imply that0 < v < £, in particular,y is B. Computing the reciprocal
a single word number. The usefulnesafomes from Eq. (1) From the definition ofv, we have

which implies 2 I B
S o
() u1v () upv
—rwpb+tu)—— =1+ —+—+—. 2
d (1 + wo) B2 tTp g B2 @) so for architectures that provide an instruction for dinglia
dIwo-word number by a single word, that instruction can be

side is upper bounded by and hence also bg. Since the used to compute the reciprocal straightforwardly.

. . . ._If such a division instruction is lacking or if it is slow, the
terms on the right hand side are non-negative, the expressjg . . . :
o__reciprocal can be computed using the Newton iteration
is still upper bounded by if some of the terms are omitted

or truncated. Tpt1 =z + 2k (1 — zxd). 3)

Since (8 + v)/3% < 1/d, the expression on the right han

This equation implies that

1-— I/H_ld = (1 — .”L'kd)2. (4)

Consider one iteration, and assume that the accuraay, @6
roughlyn bits. Then the desired accuracyof,; is about2n
bits, and to achieve that, only abd# bits of d are needed in
Eq. (3). Ifzy, is represented usingbits, matching its accuracy,
then the computation of the right hand side yielasbits. In
a practical implementation, the result should be truncabed
match the accuracy dfn bits. The resulting error iy is
the combination of the error according to Eq (4), the truiocat
of the result, and any truncation of thieinput.

v +— RECIPROCAL WORD(d)

vy — (v3 — [27%%(v3 +2%% +1)d]) mod 264 > unul
return vy

1 dg« |275%d] > Most significant 9 bits
2 d3p + [2732d] > Most significant 32 bits
3w 26[(218 —28)/dy | > By table lookup
4 v — 217’1}0 — |_2_31’U(2)d32J >2unullo
5 vy« 233y — 2|27 > umul | o, unul hi

6 vz« (4dve — [27%03d] — 1) mod 25 > 3 umul

7

8

Algorithm 2: Reciprocal computation fg# = 264,

Algorithm 2 gives one variant, fog = 2. Here, v, is
represented as 16 bits, as 32 bitsp, as 64 bits, ands and

vy as 65-bit values where the most significant bit, which is

always one, is implicit.
Theorem 1 (64-bit reciprocal)With 3 = 264, the outputv
of Alg 2 satisfiesd < 32 — (8 +v)d < d.

v +— RECIPROCAL WORD(d)
1 dy + [272%3d] > Most significant 9 bits
2wy 25[(218 —28)/dy | > By table lookup
3 vy« 2Ty — 2|273%3d] > unul | o, unul hi
4 vy (4v; —|275%02d] — 1) mod 232 > 3 umul

5 vz« (vg— [273%(vy 4+ 232 +1)d]) mod 232 > unul

6 return wg

Algorithm 3: Reciprocal computation fof = 232,

We get the upper boun®217/16384) x 2112 < (5/8) x 2112
and lower bound-2°7.
For (7), we have

Vg = 233’01 — 2(2_641)%([— 51)
€y = 271288% - 452d
and the upper bounfb/8)? x 29 and lower bound-25¢.
For (8), put
vh = dvg — |2712003d) + 63 — 1
ey =28 —phd = 271282 + (1 — 63)d.
(We will see in a moment that, = 2% + v3, and hence also
el = e3). Then0 < e} < (5/8)* x 264 +d < 262 + d < 2d.
It remains to show tha2%* < v} < 2 x 264, The upper bound
follows from e; > 0. For the border casé = 2%¢ — 1, one
can verify thatv} = 254, and ford < 26 — 2, we get
9128 _

g 7
3 d = 2642
2x 264 ¢
__ob4 3 64
=2 +W>2 .

Proof: We will prove that the errors in each iteration are oy the final adjustment step, we have

bounded as follows:

3
eo = 2128 — 2¥9yd leo| < T 2120 (5)
5
ep = 2128 _233y,d le1] < 3 * o112 (6)
2
€q = 2128 _ 2vod |€2| < <g> x 296 (7)
e3 =212 (250 1 u3)d O0<es<2d (8)
e =28 (2% 1 u)d O<es<d 9)

(FIXME: Skip parts of the proof? Or condense further

some other way?)Each step involves a truncation, and we
let 0 < 0 < 1 denote the truncation error in each step. Start

with (5). Letd’ = d — 2°°dy. We have
Vo = 26((218 — 28)/d9 — 50)
ey = 2118 4 211050d9 _ 249U0d/.

From this, we get the upper bourfd/4) x 2'2° and lower
bound—(3/4) x 2120,
For (6), letd’ = d — 232d3,. We have
V] = 217’1}0 — 2763U8(d - d/) + 02
e = 271282 4 9780244 9335,

27 (0 + 2% + 1)d] = [27%(2" — €3+ d)
=204 4 |275%(d — e3)]

{ d2€3

264 1 d< es
Hence, the effect of the adjustment is to increment the recip
rocal approximation if and only iés > d. The desired bound,
Eq. (9), follows. []
Algorithm 3 is the corresponding algorithm fgr = 232,
The correctness proof is analogous.
Remarks:

« The final step in the algorithm is not a Newton iteration,

264

reciprocal approximation.

choice of initial value is crucial. The 64-bit algorithm
works becauseey| < (3/4) x 2120, and (3/4)% < 1/2
(with some margin to accommodate for truncation errors).
The correctness of the 32-bit algorithm is tighter, with one
squaring less. It works because alsy'4)* < 1/2 with
a sufficient margir.

1And unlike the 64-bit variant, exhaustively testing the lB2-algorithm
does not require extreme patience or computing resources.

but an adjustment step which adds zero or one to the

To ensure that the needed adjustment is at most one, the

(¢,r) — DIV2BY1PIL({u1, uo), d, v) Proof: We have(B + v)d = 32 — k, wherel < k < d.
Substitution in the expression fergives

1 {(q1,q0) < vup > unul
2 {q1,90) < (q1,q0) + (u1,uo) ~ utk + uo(8 — d) + god
’) ’ r=wf+u—qd—d= —d.
3 g1 (g1 +1) mod g 18+uo—q1 3
4 1 (uo - qd) mod 3 - >umullo g4 he Jower bound, we clearly have> —d. We also have
5 ifr>qo > Unpredictable condition
6 theng — (g1 — 1) mod 3 GRS L S P)
7 r«— (r+d) mod B p
8 ifr>d > Unlikely condition |t follows that
9 then g — g1 +1 ~
10 re—r—d TEH}&X(—d,QO—B):C—ﬁ.
11 return ¢, r For the upper bound, we have
2
Algorithm 4: New division method. F< d” + ﬁ(ﬂﬁ_ d) + qod _ d
B—d d
_ _ _ LB -d)+2q < —d,q) =
« The algorithm can most likely be improved further. In B (6=d) ﬁqo < max(f)=
f[he Newton iteration: +z(1 - xzd), there is cancellation \yhere the final inequality follows from recognising the ex-
in the subtraction1 — xzd), since the upper part afd pression as a convex combination.]

are all one bits. But Alg. 2 computes each iteration g3emarks:
2¢ — x2d, and can therefore not exploit this cancellation.

« The execution time of Alg. 2 is roughly 50 cycles on
AMD Opteron, and 72 cycles on Intel Core 2.

o The lower bound” = ¢ — 3 is attained if and only if

U=0.Theng; =qo=0,c=0—d, andr = —d.

o The upper bound” = ¢ — 1 is attained if and only if

d=p/2,u; =3/2—1,andug = —1. Thenv = 5 —1,
[1l. DIVIDING A TWO-WORD NUMBER BY A SINGLE WORD G =08-2,q=c=03/2, and7 = 3/2 — 1.

To improve performance of division, it would be nice if we In Alg. 4, denote the value computed at line 48y Then
could get away with usingmul | o for the multiplicationg’d 7' = 7 mod 3. A straightforward application of Theorem 2
in Alg. 1 (line 2), rather than a fullrrul . Then the candidate would compare this value ta In Alg. 4, we avoid computing
remainderU — ¢’d will be computed only modulgs, even c explicitly, and instead comparé to go. To see why this still
though the full range of possible values is too large to H#ves the correct result, consider two cases:
represented by a single word. We will need some additionale Assumer > 0. Thenr’ = 7 < ¢. Hence, whenever the
information to be able to make a correct adjustment. It turns condition at line 5 is true, we havé < 3 —d, so that the
out that this is possible, if we keep the fractional part of addition at the next line does not overflow. The second

the quotient approximation around. Intuitively, we exptet adjustment condition, at line 8, reduces the remainder to
candidate remainder to be roughly proportional to the euoti the proper rangé < r < d.
fraction. « Otherwise,” < 0. Thenyr’ =7+ § > c. Sincer’ > qq,

the condition at line 5 is true, and sinee> 3 — d, the

addition overflows. After the first adjustment, we have a

remainder in the proper range. The condition at line 8 is
Our new and improved method is given in Alg. 4. Itis based fa|se.

on the following theorem. Of the two adjustment conditions, the first one is inherently
Theorem 2:Assume3/2 < d < f, 0 < w1 < d, and npredictable. For random inputs, the probability is rdygh

0 <ug < B Putv = [(8 —1)/d| — 8. Form the two-word 5004 for either outcome. This means that branch prediction

number will not be effective. For good performance, the first adjust

(q1:90) = (B +v)u1 +uo. ment must be implemented in a branch-free fashion, e.qigusi

conditional move instructions. The second conditigh> d,

is true with very low probability, and can be handled by a

i=q+1 predicated branch or using conditional move.

A. A new division algorithm

Form the candidate quotient and remainder

T = <U1,UO> - ad
B. Probability of second adjustment step

In this section, we analyse the probability of the second
adjustment step (line 8 in Alg. 4), and substantiate oumnclai
with that the second adjustment is unlikely.

We will treat7 as a random variable, but we first need to
investigate for which values af that the second adjustment
Hencer is uniquely determined given mod 3, d and . step is done. There are two cases:

Then7 satisfies
c—pB<r<c

¢ =max(f8 —d, q)-

o If ¥>d, then¥ < ¢ andd > — d imply that7 < gg.
The first adjustment is skipped, the second is done.

o If 7> qo, then? < ¢ implies thatr < g8 — d andd <
7+ d < 3. The first adjustment is done, then undone by
the second adjustment.

The inequalities” > d andr > ¢q are thus mutually exclusive,
the former possible only whegq, > d and the latter possible
only whengg < 6 — d.

One example of each kind, fgt = 2° = 32:

Probability [%]

U d q r | v k q@ q T
414 18 23 024 16 22 30 18
504 18 28 0|24 16 28 0 O

3
To find the probabilities, in this section,we treatas a Fig. 1. Probability of the unlikely adjustment step, as action of the ratio
random variable. Consider the expressionifpr §=d/B.
o U1k+U0(5—d) —|—qu 4
6} ' probabilities

We assume we have a fixed= ¢4, with 1/2 < ¢ < 1, _ B !
and consider; andu, as independent uniformly distributed Plr>¢6] = /3_£_1/£ PIR>2—s]ds
random variables in the rangés< u; < d and0 < ugy < S. £41/6—2

We also make the simplifying assumptions thaand g, are = / PR > 1+ s|ds
independent and uniformly distributed, in the ran@es k < 01 ¢
d and0 < ¢p < (3, and that all these variables azentinuous ~ / B
. P[r > q = PR>1+(1/£-1)s|d
rather than integer-valuéd. 72 ao] 0 [R=1+(1/¢—1)s]ds
Theorem 3:Assume that /2 < £ < 1, thatus, ug, k andgo 1 E+1/6-2
are independent random variables, continuously and umifor = 161 /0 P[R > 1+ s]ds.

distributed with ranges < ui,k < &6, 0 < up,qo < . Let _ o
Adding the probabilities (recall that the events are muyual

= urk +uo(1 — §)B8 + qoé — 8. exclusive), we get the probability of adjustment as
6 1 E+1/6-2
hen T /O P[R > 1+ sds. (12)
P[> &4 or 7 > qo] We next need the probabilitieB[R > s| for 1 < s <

@2-1/¢)? . 2 _1/¢) 1 &+ 1/¢ — 1. By somewhat tedious calculations, we find

= g
6(1 —¢)? £ 6 P[ng]_%(l—logﬁs)

11 11 11 d
+0-0 -5+ 5)+ (00 ¢
PIR2 s] = 1= Bmax(0,X — (s = (1/¢ ~ 1)))
Proof: Define the stochastic variables C (s+1- 1/¢)? g s+1-1/¢
_wk o wktuw(-98 o @ 2(1-¢) 3

£p? £p? B +52—4(8+1—1/§)+3(8+1—1/£)2

Now, 41-¢) ’
T R+Q—1 where the latter equation is valid only ferin the interval

& ' of interest. Substituting in Eq. (11) and integrating yseld

Eq. (10), which completes the proof.]

By assumption) is uniformly distributed, whileR has a more

complicated distribution. Conditioning o = s, we get the In Fig. 1, the adjustment probability of Eq. 10 is plotted as

a function of the ratic¢ = d/3. This is a rapidly decreasing

5 . — . L . function, with maximum value fo€ = 1/2, which gives the
These assumptions are justified for large word-size. $tiégteaking, with babili £ for d cl Thi

fixed d, the variablek is of course not random at all. To make this argument/OrSt case probability o /_36 or g close tQﬁ/?. IS curve

strict, we would have to treaf as a random variable with values in a smallis based on the assumptions on continuity and independence

range aroundt3, e.g., uniformly distributed in the ranges + /%, and of the random variables. For a fixe#l and word size, the
consider the limit as3 — oo. Then the modulo operations involved in

qo and k make these variables behave as almost independent andnigifo adeStment prQbability for randomy ‘?mduO will deviate some
distributed. from this continuous curve. In particular, the border cdse

(/2 actually gives an adjustment probability of zero, so it i§ (r1,70) — DIV3BY2PIL((2, ur, ug), (di, do), v)
not the worst case. PAT L U1, U0), (A1, 00),

i I
(FIXME: Comment on empirical data? Maybe add to (a1, a0) — vuz > uml
|0t')) <q17 QO> — <q17 q0> + <U2, U1>
Pen 71« (u1 — qudy) mod 3 > unul | o
(t1,t0) < don > umul

(r1i,m0) < ({r1,uo) — (t1,to) — (d1,dp)) mod 3?
q1<—(q1—‘,—1) mod f3
if r1>qo

IV. EXTENSIONS FOR SCHOOLBOOK DIVISION

The key idea in Alg. 4 can be applied to other small
divisions, not just two-word divided by single word (derobte then a1 1 d
“2/1 division”). This leads to a family of algorithms, all vidh 2’7{1 TO(;’}_ (<21H2> f (ds.do)) mod 32
compute a quotient approximation by multiplication by g, S di d ’ ’ Unlikelv condition
precomputed reciprocal, then omit computing the high, atm it {r1,mo) = (d, do) > ey "
cancelling, part of the corresponding candidate remajnd%
and finally, they perform an adjustment step using a fracti(iré
associated with the quotient approximation.

We will focus on extensions that are useful for SChOOIbOO,KIgorithm 5: Dividing a three-word number by a two-word
division with a large divisor. The most important extensioH b y inal d :
) T o) - ted l.
is 3/2-division, i.e., dividing a three-word number by a two umber, Using a singie-word precomplited reciproca
word number. This is described next. Later on in this section

we will also look into variations that produce more than one, . . .
quotient word. which is in the rang® < v < 5. Form the two-word number

O©oO~NOULA WNPE

theng; «— ¢ +1
(r1,70) < (r1,70) — (d1,do)
return g1, (r1,7r0)

(q1,q0) = (B + v)uz + us.

A. Dividing a 3-word number by a 2-word number

o . - . Form the candidate quotient and remainder
For schoolbook division with a large divisor, the simplest d

method is to compute one quotient word at a time by divid-

ing the most significant two words of the dividend by the N _

single most significant word of the divisor, which is a direct 7= (uz,u1,u0) — ¢ (di, do)-

application of Alg. 4. Assuming the divisor is normaliselge t L

resulting quotient approximation is at most two units tagéa Then7 satisfies

Next, the corresponding remainder candidate is computdd an c—-p<r<ec

adjusted if necessary. A drawback with this method is that

the probability of adjustment is significant, and that eachith

adjustment has to do an addition or a subtraction of large ¢ = max(82 — D, o)

numbers. To improve performance, it is preferable to comput ’ '

a quotient approximation based on one more word of both) .

dividend and divisor, three words divided by two words, With - 0°f We have(s +v) D = 5° — I, for someK in the
. L X T rangel < K < D. Substitution gives

a normalised divisor, the quotient approximation is at noost

off, and the probability of error is small. For more details o

g=q +1

the schoolbook division algorithm, see [3, Sec. 4.3.1, Al}. r=U-qb)
and [4] _ U2K+U1(6 —D)+U06+QQD _D
We therefore consider the following problem: Divide B

(ug2,u1,up) by (d1, dp), computing the quotient and remain-

_ _) .
der (r1,70). To ensure thag fits in a single word, we assume 1 N€ lower bounds™ > —D andr > o3 — 5~ follow in the

that (us, < (dy.dy), and like for 2/1 division, we also same way as in the proof of Theorem 2, proving the lower
(uz, 1) {d1, do) bound7 > ¢ — 2. For the upper bound, the border cases

assume that the divisor is normalised. kes th ; involved. Wi q id |
Algorithm 5 is a new algorithm for 3/2 division. The adjust-maseiS the proot more involved. We need to consider severa

ment condition at line 7 is inherently unpredictable, anoidt
therefore be implemented in a branch-free fashion, whiée th o If us <d; — 1, then
second one, at line 10, is true with very low probability. The

algorithm is similar in spirit to Alg. 4. The correctness bét 7o (di —1)D+ (B —1)(8* = D)+ * — 8D + qoD
algorithm follows from the following theorem. B
Theorem 4:Consider the division of the three-word number _ (B*=D)*+ qBD —dyD
U = (ug,u1,up) by the two-word numbeD = (di,dp). B 32
Assume that3/2 < d; < 8 and (ug,u1) < {(d1,dp) Put 82—D doD

= (8* = D) + %%ﬁ—

3 _ (2 Nz
U:{ﬁDlJ—ﬁ <ec.

v +— RECIPROCAL WORD_3BY2({d1, dp))

1 v < RECIPROCAL WORD(d;)
> We have3? —d; < (B +v)d; < B2

2 p«dyvmodpj > unmul | o
3 p—(p+do) modp

4 if p<dp > Equivalent to carry out
5 thenv «— v —1

7 thenv «—v—1

8 p—p—d

9 p < (p—di) mod

> We have3? — d; < (B +v)dy +do < 3.

10 <t1, t0> — wvdy > unul
11 pe (p+t) mod 3

12 ifp<ty > Equivalent to carry out
13 thenv «— v —1

14 if <p, t0> Z <d1,d0>

15 thenv «— v —1

16 return v

Start with the initial reciprocab, based ond; only, and
the corresponding produ¢t + v) d1 3, where only the middle
word is represented explicitly (the high wordds- 1, and the
low word is zero). We then add firgtd, and thenudy to this
product. For each addition, if we get a carry out, we cancel
that carry by appropriate subtractionsdf andd, to get an
underflow. The details are given in Alg. 6.

Remark: The productd;v mod 3, computed in line 2, may
be available cheaply, without multiplication, from thednt
mediate values used in the final adjustment stepefIPRG
CAL_WORD (Alg. 2 or Alg. 3).

C. Larger quotients

The basic algorithms for 2/1 division and 3/2 division can
easily be extended in two ways.

« One can substitute double-words or other fixed-size units
for the single words in Alg. 4 and Alg. 5. This way, one
can construct efficient algorithms that produce quotients
of two or more words. E.g., with double-word units, we
get algorithms for division of sizes 4/2 and 6/4.

Algorithm 6: Computing the reciprocal needed for , |n any of the algorithms constructed as above, one can
DIV3BY2PI1; a single word reciprocal based on a two- fix one or more of the least significant words of both

word divisor.

o If ug = dy, thenuy < do — 1, by assumption. In this
case, we get

= diD + (do —1)(6% — D) + 32 — 3D + qoD

54
2 _
_5 D(52—D)+%QO5

52
L (B=d) (B+1)D-5)
52
cor @z +1D-)

Under the additional assumption that< 5(5 — 1), we
get(B+1)D — 32 < —3 <0, and it follows that” < c.

« Finally, the remaining border caseds = d; and D >
B(6 —1). We then havew, =dy =8 —1, 0 <uy < do,
andv = 0 since(8® —1)/D — 3 < 1. It follows that
q =us =0 —1. We get

r=u—LFD=0(us —dy)+up<0<e.

Hence the upper bound< c is valid in all cases.

(FIXME: Try to simplify, by doing the borderline cases
first?) []

B. Computing the reciprocal for 3/2 division

dividend and divisor to zero. This gives us algorithms
for division of sizes such as 3/1 and 5/3 (and applying
this procedure to 3/2 would recover the good old 2/1
division).
Details and applications for some of these variants are de-
scribed in [4].

V. CASE STUDY. X86_64 IMPLEMENTATION OF /1
DIVISION

Schoolbook division is the main application of 3/2 division
as was described briefly in the previous section. We now turn
to a more direct application of 2/1 division using Alg. 4.

In this section, we describe our implementation of
DIV_NBY1, dividing a large number by a single word number,
for current processors in the x84 family. We use condi-
tional move €nov) to avoid branches that are difficult to
handle efficiently by branch-prediction. Besidesov, the
most crucial instructions used araul , i mul , add, adc,
sub andl ea. Detailed latency and throughput measurements
of these instructions, for 32-bit and 64-bit processorshia t
x86 family, are given in [5]. When discussing the details
of instruction timing, we focus primarily ommb Opteron.
Results are provided for botkmD Opteron and Intel Core 2.

A. Dividing a large integer by a single word

Consider division of am-word numbeiU by a single word
numberd. The result of the division is am-word quotient

The reciprocal needed by Alg. 5, even though still a singknd a single-word remainder. This can be implemented by

word, is slightly different from the reciprocal that is needby

repeatedly replacing the two most significant words (of

Alg 4. To compute the needed reciprocal, one can use Algbg their single-word remainder modulfy and recording the
or Alg. 3 (depending on word size) to compute the reciprocabrresponding quotient word [3, Sec. 4.3.1, exercise 16§ T
of the most significant word/;, followed by a couple of variant shown in Alg. 7 computes a reciprocalbfand hence
adjustment steps to take into account the least significard w requires that! is normalised), and applies our new 2/1 division

do. We suggest the following strategy:

algorithm in each step.

| oop: nov (up, un, 8), % dx

(Q,r) < DIV_NBY1(U, d) shl d %!, %dx, %14
In: U = (up—1...uo) | ea (d, % 14), %12
Out: Q = (gn—-1---q0)- bt $63, % 14

1 v« RECIPROCAL WORD(d) cnmovnc % 14, % 12

2 10 0 0 mov % ax, % 10

3 forj=n—-1,...,0 0 0 adc $0, % ax

4 do (g;,7) < DIV2BY1PI1({r,u;),d,v) 1 2 mul di nv

5 return (Q,r) 5 8 add % 12, % ax

nov d, % ax
Algorithm 7: Dividing a large integet/ = (u,,—1...ug) by a 6 10 adc % 10, 9% dx
normalised single-word integel: 7 12 not % dx
8 13 nov % dx, % 12
| oop: 8 13 mul % dx
mv (np, un, 8), % ax 12 21 add % ax, % 14
div d 13 23 adc 9% dx, % 10
mov % ax, (qp, n, 8) 14 25 sub d, % 10
dec un 13 22 | ea (d, % 14), % ax
jnz loop 14 26 cnovnc % 14, % ax

Example 1: Basic division loop using tha#i v instruction, AMD Intel sub % 12, % 10

running at 71 cycles per iteration oMb Opteron, and 116 mv (up,un, 8), % 14

cycles on Intel Core 2. Note thatax andr dx are implicit nmov % 10, 8(qgp, un, 8)

input and output arguments to tldé v instruction. dec un

jnz | oop

To use Alg. 7 directlyd must be normalised. To also handlézxamIOIe 2: Previous meth_od u_sing a precomputed reciprocal,
unnormalised divisors, we select a shift countsuch that "Y"NNJ at 17 cycles per iteration osmD Opteron, and 32
3/2 < 2%d < B. Alg. 7 can then be applied to the shifted?Y¢les on Intel Core 2.
operands2*U and 2*d. The quotient is unchanged by this
transformation, while the resulting remainder has to béeshi
k bits right at the end. Shifting off can be done on the fly
in the main loop. In the code examples, registerholds the
normalisation shift counk.

erations, via the ax register, is still crucial to understand the
performance. Consider the sequence of dependent instnscti
in the loop, from the first use afax until the output value of
the iteration is produced. This is what we call tleeurrency
chainof the loop. The assembler listing is annotated with cycle
numbers, fommD Opteron and Intel Core 2. We let cycle 0 be
The main loop of an implementation in x864 assembler is the cycle when the first instructions on the recurrency chain
shown in Example. 1. Note that tike v instruction in the x86 starts executing, and the following instructions in theigha
family appear to be tailor-made for this loop: This instians are annotated with the cycle number of the earliest cycle the
takes a divisor as the explicit argument. The two-word inpg{struction can start executing, taking its input depecikn
dividend is placed with the most significant word in théx ito account.
register and the least significant word in thax register. The Tg create the annotations, one needs to know the latencies
output quotient is produced inax and the remainder indX. of the instructions. Most arithmetic instructions, indiugl
No other instruction in the loop need to touchix as the .ppy andl ea have a latency of one cycle. The cruciall
remainder is produced by each iteration and consumed in {3gruction has a latency of four cycles until the low half of
next. .) . the product is available inax, and one more cycle until the
However, the dependency between iterations, via the §gyh half is available i dx. Thei mul instructions, which
mainder inrdx, means that the execution time is lowep oqyces the low half only, also has a latency of four cycles.
bounded by the latency of thdi v instruction, which is These numbers are famp, the latencies are slightly longer
71 cycles onamD Opteron [5] (and even longer, 116 cyclesg |ntel Core 2 (5 cycles for mul and 8 formul). See [5]
on Intel Core 2). Thanks to parallelism and out-of-ordgp, extensive empirical timing data.

execution, the rest of the instructions are executed Wh“eUsing these latency figures, we find that the latency of the
waiting for the result from the division. This loop is moreth recurrency chain in Example 2 is 15 cycles. This is a lower

an order of magnitude slower than the loop for multiplying gound on the execution time. It turns out that the loop runs in

B. Nave implementation

large number by a single-word number. 17 cycles per iteration; the instructions not on the recwye
o chain are mostly scheduled for execution in parallel with th
C. Old division method recurrency instructions, and there’s plenty of time, 8 eg¢l

The earlier division method from [1] can be implementedhen thecpu is otherwise just waiting for the results from
with the main loop in Example 2. The dependency between ape multiplication unit. This is a four time speedup comjplare

| oop: nop Implementation Recurrency chain latency
and real cycle counts
mov (up, un, 8) , %10 AMD Opteron Intel Core 2
0 0 | ea 1(%Wax), %1l Naivedi v loop (Ex. 1) | 71 71 116 116
shl d °ocl, % 10, % bp Old method (Ex. 2) 15 17 28 32
0 0 mul di nv New method (Ex. 3) 13 13 24 245
4 8 add % bp, % ax TABLE I
5 10 d o 11 % d SUMMARY OF THE LATENCY OF THE RECURRENCY CHAIN AND ACTUAL
adc ¢ ! & dX CYCLE COUNTS, FOR TWO X86_64 PROCESSORSTHE LATENCY NUMBERS
nov % ax, % 11 ARE LOWER BOUNDS FOR THE ACTUAL CYCLE COUNTS
nov % dx, % 13
6 12 i mul d, % dx
10 20 sub % dx, % bp
nmov d, % ax Core 2. If we instead compare actual cycle counts, we see a
11 21 add % bp, % ax speedup of 31% on both Opteron and Core 2. On Opteron,
11 21 cnp % 11, % bp we gain one cycle from replacing one of thal instructions
12 22 cmovb % bp, % ax by the fasteii nul , the other cycle shaved off the recurrency
AMD Intel adc $-1, %13 chain are due to the simpler adjustment conditions.
cnp d, % ax In this application, the code runs slower on Intel Core 2
j ae fix than onamD Opteron. The Intecpu loses some cycles due
ok: nmov % 13, (qgp) to higher latencies for multiplication and carry propagati
sub $8, qp resulting in a higher overall latency of the recurrency ohai
dec un And then it loses some additional cycles due to the fact that
nmov % 10, % bp the code was written and scheduled with Opteron in mind.
j nz | oop
jmp done
VI. CONCLUSIONS AND FURTHER WORK
- 0
fix: .SUb d, % ax We have described and analysed a new algorithm for
i nc % 13 L : w4 n
. ok dividing a two-word number by a single-word number (“2/1"-
done: P division). The key idea was that when computing a candidate

remainder where the most significant word almost cancels, we

Example 3: Division code (fromcmp-4.3) with the new omit computing the most significant word. To enable correct
division method, based on Alg. 4. Running at 13 cycles pagjustment of the quotient and the remainder, we work with a
iteration onAMD Opteron, and 24.5 cycles on Intel Core 2. slightly more precise quotient approximation and an assedi

fractional word.
Like previous methods, we compute the quotient via an

to the 71-cycle loop based on tiok v instruction. For Intel approximate reciprocal of the remainder. We describe new,

Core 2, the latency if the recurrency chain is 28 cycles, @vhilnore efficient, algorithms for computing this reciprocadr f
the actual running time is 32 cycles per iteration.

D. New division method

The main loop of an implementation of the new divisiorg)]c
method is given in Example 3. Annotating the listing wit
cycle numbers in the same way, we see that the latency of
recurrency chain is 13 cycles. Note that the rarely takendira
does not belong to the recurrency chain. The loop actualy al
runs at 13 cycles per iteration; all the remaining instaucsi
are scheduled for execution in parallel with the recurren
chain.® For Intel Core 2, the latency of the recurrency cha
is 24 cycles, with an actual running time of 24.5 cycles p%r

iteration.

Comparing the old and the new method, first make the
conservative assumption that all the loops can be tunedtto ge

the most common cases of a word size of 32 or 64 bits.
These algorithms are pretty good, but they can most likely
be improved further.

The new algorithm for 2/1 division directly gives a speedup
roughly 30% on current processors in the x86 family,

"{ r the application of dividing a large integer by a singlerdio

% curious that on these processors, the combination of ou
reciprocal algorithm (Alg. 2) and division algorithm (Alg)
is significantly faster than the built in assembler instiarct
for 2/1 division. This indicates that the algorithms may Iie o

i(?{terest for implementation ikPuU microcode.

We have also described a couple of extensions of the
asic algorithm, primarily to enable more efficient schoolk
division with a large divisor.

Most of the algorithms we describe have been implemented
the GmP library [2].

their running times down to the respective latency bounds.
then get a speedup of 15% amD Opteron and 17% on Intel

3 ACKNOWLEDGEMENTS
It's curious that if thenop instruction at the top of the loop is removed,

the loop runs one cycle slower. It seems likely that simikmdom changes
to the instruction sequence in Example 2 can reduce its mgntiine by one
or even two cycles, to reach the lower bound of 15 cycles.

(FIXME: Thanks to Stephan Tolksdorf, Bj 6rn Terelius,
any other?)

REFERENCES

[1] T. Granlund and P. L. Montgomery, “Division by invariaimtegers using
multiplication,” in Proceedings of the SIGPLAN PLDI'94 Conference
June 1994.

[2] T. Granlund, “GNU multiple precision arithmetic librgrversion 4.3,
May 2009, http://gmplib.org/.

[3] D. E. Knuth,Seminumerical AlgorithmsSrd ed., ser. The Art of Computer
Programming. Reading, Massachusetts: Addison-WesI&8,1l. 2.

[4] T.Granlund and N. Moller, “Division of integers larga@small,” August
2009, to appear.

[5] T. Granlund, “Instruction latencies and throughput #MD and Intel
x86 processors,” 2009, http://gmplib.orgege/x86-timing.pdf.

10

