
Subquadratic gcd

Niels Möller

October 30, 2008

Outline

Background
Algorithm comparison
The half-gcd (hgcd) operation
Subquadratic hgcd

Quotient based HGCD
Jebelean’s criterion
Why backup steps?

Robust HGCD
Difference-based hgcd

fft-related optimizations

fft interface

Optimizations

Background

History

◮ 300 BC (or even earlier): Euclid’s algorithm.

◮ 1938: Lehmer’s algorithm.

◮ 1961: Binary gcd described by Stein.

◮ 1994, 1995: Sorensson, Weber.

◮ 1970, 1971: Knuth and Schönhage, subquadratic computation
of continued fractions.

◮ ca 1987: Schönhage’s “controlled Euclidean descent”,
unpublished.

◮ 2004: Stéhle and Zimmermann, recursive binary gcd.

◮ 2005–2008: Möller. Left-to-right algorithm. Simpler and
slightly faster than earlier algorithms.

Comparison of gcd algorithms (before current project)

Algorithm Time (ms) # lines

mpn gcd 1440 304 gmp-4.1.4 (Weber)
mpn rgcd 87 1967 “Classical” Schönhage gcd

mpn bgcd 93 1348 Rec. bin. (Stehlé/Zimmermann)
mpn sgcd 100 760 1987 alg. (Schönhage/Weilert)
mpn ngcd 85 733 New algorithm for gmp-5

Comparison of gcd algorithms (before current project)

Algorithm Time (ms) # lines

mpn gcd 1440 304 gmp-4.1.4 (Weber)
mpn rgcd 87 1967 “Classical” Schönhage gcd

mpn bgcd 93 1348 Rec. bin. (Stehlé/Zimmermann)
mpn sgcd 100 760 1987 alg. (Schönhage/Weilert)
mpn ngcd 85 733 New algorithm for gmp-5

◮ Benchmarked on 32-bit amd, with inputs of 48 000 digits.

◮ Cross-over around 7 700 digits.

◮ Today: 82 ms for the same machine and input size.

Questions

Q Where does the complexity come from?

A Accurate computation of the quotient sequence.

Q How to avoid that?

A Stop bothering about quotients.

What is hgcd?

Definition (Reduction)

(
A

B

)

= M

(
α
β

)

◮ Positive integers A, B , α, and β.

◮ Matrix M, non-negative integer elements.

◮ det M = 1.

What is hgcd?

Definition (Reduction)

(
A

B

)

= M

(
α
β

)

◮ Positive integers A, B , α, and β.

◮ Matrix M, non-negative integer elements.

◮ det M = 1.

Fact

For any reduction, gcd(A,B) = gcd(α, β)

What is hgcd?

Definition (Reduction)

(
A

B

)

= M

(
α
β

)

◮ Positive integers A, B , α, and β.

◮ Matrix M, non-negative integer elements.

◮ det M = 1.

Fact

For any reduction, gcd(A,B) = gcd(α, β)

Definition (hgcd, “half gcd”)

Input: A,B , of size n

Output: M, with size of α, β and M elements ≈ n/2

Main idea of subquadratic hgcd

n p1 ≈ n/2

A
...

B
...

︸ ︷︷ ︸

M1 ← hgcd(⌊2−p1A⌋, ⌊2−p1B⌋)
(

A

B

)

← M−1
1

(
A

B

)

≈ 3n/4 p2 ≈ n/2

A
...

B
...

︸ ︷︷ ︸

M2 ← hgcd(⌊2−p2A⌋, ⌊2−p2B⌋)
M ← M1 ·M2

Asymptotic running time

gcd(A,B)

1 while #(A,B) > gcd-threshold

2 do

3 n← #(A,B), p ← ⌊2n/3⌋
4 M ← hgcd(⌊2−pA⌋, ⌊2−pB⌋)
5 (A;B)← M−1(A;B)
6 return gcd-base(A,B)

Running times for operations on n-bit numbers

Multiplication: M(n) = O(n log n log log n)
hgcd: H(n) = O(M(n) log n)
gcd: G (n) ≈ 2H(n)

Quotient based HGCD

Definition (Quotient sequence)

For any positive integers a, b, the quotient sequence qj and
remainder sequence rj are defined by

r0 = a r1 = b

qj = ⌊rj−1/rj⌋ rj+1 = rj−1 − qj rj

Definition (Quotient sequence)

For any positive integers a, b, the quotient sequence qj and
remainder sequence rj are defined by

r0 = a r1 = b

qj = ⌊rj−1/rj⌋ rj+1 = rj−1 − qj rj

Fact

(
a

b

)

= M

(
rj

rj+1

)

with

M =

(
q1 1
1 0

)(
q2 1
1 0

)

· · ·

(
qj 1
1 0

)

Theorem (Jebelean’s criterion)

Let a > b > 0, with remainders rj and rj+1, and

(
a

b

)

=

(
u u′

v v ′

)

︸ ︷︷ ︸

=M

(
rj

rj+1

)

Let p > 0 be arbitrary, 0 ≤ A′,B ′ < 2p, and define

(
A

B

)

= 2p

(
a

b

)

+

(
A′

B ′

)

(
Rj

Rj+1

)

= 2p

(
rj

rj+1

)

+ M−1

(
A′

B ′

)

For even j, the following two statements are equivalent:

(i) rj+1 ≥ v and rj − rj+1 ≥ u + u′

(ii) For any p and any A′,B ′, the jth remainders of A and B are

Rj and Rj+1. The quotient sequences are the same.

Quotient based hgcd

A generalization of Lehmer’s algorithm

Define hgcd(a, b) to return an M satisfying Jebelean’s criterion.

Example (Recursive computation)

(a; b) = (858 824; 528 747)

M1 = (13, 8; 8, 5) No difficulties

(c ; d) = M−1
1 (a; b) = 16 (4009; 194) + (0; 15)

M2 = hgcd(4009, 194) = (21, 20; 1, 1)

M−1
2 (4009; 194) = (129; 65) Satisfies Jebelean

M = M1 ·M2 = (281, 268; 173, 165)

M−1(a; b) = (1764; 1355)

Backup step

Example (Continued)

(a; b) = (858 824; 528 747)

M = M1 ·M2 = (281, 268; 173, 165)

M−1(a; b) = (1764; 1355) Violates Jebelean

1764 − 1355 6≥ 281 + 268

M corresponds to quotients 1, 1, 1, 1, 1, 1, 20, 1.
E.g., (A;B) = 8 (a; b) + (1; 7) has quotient sequence starting with
1, 1, 1, 1, 1, 1, 20, 2.

Backup step

Example (Continued)

(a; b) = (858 824; 528 747)

M = M1 ·M2 = (281, 268; 173, 165)

M−1(a; b) = (1764; 1355) Violates Jebelean

1764 − 1355 6≥ 281 + 268

M corresponds to quotients 1, 1, 1, 1, 1, 1, 20, 1.
E.g., (A;B) = 8 (a; b) + (1; 7) has quotient sequence starting with
1, 1, 1, 1, 1, 1, 20, 2.

Conclusion

◮ The quotients are correct for (a; b), but not robust enough.

◮ Must drop final quotient before returning hgcd(a, b).

Robust HGCD

A robustness condition

Definition (Robust reduction)

A reduction M of (A;B) is robust iff

M−1

{(
A

B

)

+

(
x

y

)}

> 0

for all “small” (x ; y). More precisely, for all (x ; y) ∈ S , where

S = {(x ; y) ∈ R
2, |x | < 2, |y | < 2, |x − y | < 2}

A robustness condition

Definition (Robust reduction)

A reduction M of (A;B) is robust iff

M−1

{(
A

B

)

+

(
x

y

)}

> 0

for all “small” (x ; y). More precisely, for all (x ; y) ∈ S , where

S = {(x ; y) ∈ R
2, |x | < 2, |y | < 2, |x − y | < 2}

Theorem

The reduction (
A

B

)

=

(
u u′

v v ′

)

︸ ︷︷ ︸

=M

(
α
β

)

is robust iff α ≥ 2max(u′, v ′) and β ≥ 2max(u, v)

Strong robustness

Definition (Strong robustess)

Let n = #(A,B) denote the bitsize of the larger of A and B . If
min(α, β) > ⌊n/2⌋ + 1, then M is strongly robust.

Lemma

If a reduction M is strongly robust, then it is robust.

Strong robustness

Definition (Strong robustess)

Let n = #(A,B) denote the bitsize of the larger of A and B . If
min(α, β) > ⌊n/2⌋ + 1, then M is strongly robust.

Lemma

If a reduction M is strongly robust, then it is robust.

Theorem (Schönhage-Weilert reduction)

For arbitrary A,B > 0, let n = #(A,B) and s = ⌊n/2⌋ + 1.
Assume #min(A,B) > s. There exists a unique strongly robust M

such that # min(α, β) > s and #|α− β| ≤ s.

New simpler hgcd

hgcd(A,B)

1 n← #(A,B)
2 s ← ⌊n/2⌋ + 1
3 Split: p1 ← ⌊n/2⌋, A = 2p1a + A′, B = 2p1b + B ′

4 (α, β,M1)← hgcd(a, b)

5 (A;B)← 2p1(α;β) + M−1
1 (A′;B ′) � #|A− B | ≈ 3n/4

6 One subtraction and one division step on (A;B). Update M1.
7 Split: p2 ← 2s −#(A,B) + 1, A = 2p2a + A′, B = 2p2b + B ′

8 (α, β,M2)← hgcd(a, b)

9 (A;B)← 2p2(α;β) + M−1
2 (A′;B ′)

10 M ← M1 ·M2

11 while #|A− B | > s � At most four times
12 One division step on (A;B). Update M.
13 return (A,B ,M)

fft-related optimizations

Matrix multiplication

M1 ·M2 2× 2 matrices

Assume fft and sizes such that the transforms dominates the
computation time.

fft ifft Saving

Naive 16 8 0%
Schönhage-Strassen 14 7 12%
Invariance 8 4 50%

Recently implemented. 15% speedup of gcd for for large inputs.

Matrix-vector multiplication

◮ If α, β are returned: M of size n/4, A′,B ′ of size n/2.

M−1 ·

(
A

B

)

= 2p

(
α
β

)

+ M−1 ·

(
A′

B ′

)

#Mults. Prod. size

Naive 4 3n/4 Wins in fft range
Block 8 n/2 Can use invariance
S.-S. 7 n/2 Wins in Karatsuba range

Matrix-vector multiplication

◮ If α, β are returned: M of size n/4, A′,B ′ of size n/2.

M−1 ·

(
A

B

)

= 2p

(
α
β

)

+ M−1 ·

(
A′

B ′

)

#Mults. Prod. size

Naive 4 3n/4 Wins in fft range
Block 8 n/2 Can use invariance
S.-S. 7 n/2 Wins in Karatsuba range

◮ If only matrix is returned: M of size n/4, A,B of size n.

(
α
β

)

= M−1 ·

(
A

B

)

α, β are of size 3n/4 (cancellation!). Compute mod(2k ± 1),
with transform size ≈ 3n/4.

Matrix-vector multiplication

◮ If α, β are returned: M of size n/4, A′,B ′ of size n/2.

M−1 ·

(
A

B

)

= 2p

(
α
β

)

+ M−1 ·

(
A′

B ′

)

#Mults. Prod. size

Naive 4 3n/4 Wins in fft range
Block 8 n/2 Can use invariance
S.-S. 7 n/2 Wins in Karatsuba range

◮ If only matrix is returned: M of size n/4, A,B of size n.

(
α
β

)

= M−1 ·

(
A

B

)

α, β are of size 3n/4 (cancellation!). Compute mod(2k ± 1),
with transform size ≈ 3n/4.

◮ Same transform size, 3n/4, no matter if reduced numbers are
available or not!

fft multiplication

b Bit-size for polynomialization
Zm Ring for polynomial coefficients
n = 2k Transform size
ℓ Length of product polynimial (degree + 1)

For “small-prime” fft, m is the product if a small number of
limb-sized primes.

c ← u · v

1 Split inputs, u = pu(2b) = u0 + · · · + uℓu−12
b(ℓu−1), v = pv (2b)

2 Evaluate pu(ωj) mod m and pv (ωj) mod m for ℓ distinct ωj

3 Compute pc(ωj) = pu(ωj)pv (ωj) mod m.
4 Find cj , so that pc(x) = c0 + c1x + · · ·+ cℓ−1x

ℓ−1

5 Evaluate c = pc(2
b)

Correctness

Fact

If the coefficients of pu(x)pv (x), over Z, belong to [0,m), then

c = uv mod (2nb − 1)

Can be extended to other bilinear operations

◮ ab + cd .

◮ Strassen-multiplication of matrices.

For correctness, the coefficients of the resulting polynomial, over
Z, must be uniquely determined modulo m.

fft interface
Parameters Takes bit size L, a bound for the smaller factor S ,

and a growth parameter G , and limit parameter M.
Outputs a polynomial base b, transform size n = 2k ,
product length ℓ = ⌈L/b⌉, small factor length
ℓs = ⌈S/b⌉, and modulo m, such that

nb > L 22bℓsG ≤ m

Transform Takes an integer u and computes the first ℓ elements
of the transform.

Inverse Takes a the first ℓ elements of a transform, computes
ℓ polynomial coefficients uj under the assumption
that the last n− ℓ coefficients are zero, and returns
the corresponding number. If M < G , coefficients
may be negative.

Multiplication Multiplies two transforms. One of them should
correspond to a polynomial of length at most ℓs .

Add, sub Add or subtract two transforms.
Scalar mul Multiply a transform by a small constant.

Results

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

GCD

2008-09-08.data
2008-09-11.data
2008-09-15.data
2008-09-17.data
2008-09-22.data
2008-10-29.data

Corresponding changes

2008-09-08 Old quotient-based hgcd.

2008-09-11 New hgcd code.

2008-09-15 Use Strassen multiplication.

2008-09-17 Changed p i gcd outerloop from n/2 to 3n/2.

2008-09-22 New assembler loop for uA− vB .

2008-10-29 fft invariance

Performance for large numbers

◮ Use more fft invariance, currently used only for M1 ·M2.

◮ Try a hgcd function returning only the matrix M, not the
reduced numbers. Can use fft wrap-around.

◮ Investigate the choice of p in the gcd and gcdext

outer-loops. p = 2n/3 seems to work fine for gcd, but
optimal splitting is much harder for gcdext.

◮ Further optimizations of the fft transformations. Currently,
assembler loops only for x64 64, and only the forward
transform has been optimized seriously.

Performance for medium size numbers

Linear work O(n) calls to hgcd 2. Current code is full of
branches and not optimized for current processors.

Quadratic work In base case.

◮ Combine mpn mul 1 and mpn submul 1 in a
single loop computing va− ub. Tried on x86 64,
with a modest speedup.

◮ On processors where mpn mul 2 and
mpn submul 2 are efficient, implement hgcd4,
as two calls to hgcd2. Then apply an M with
two-limb elements to the bignums.

	Background
	Algorithm comparison
	The half-gcd (hgcd) operation
	Subquadratic hgcd

	Quotient based HGCD
	Jebelean's criterion
	Why backup steps?

	Robust HGCD
	Difference-based hgcd

	fft-related optimizations
	fft interface
	Optimizations

