
Abstract

Subquadratic divide-and-conquer algorithms for computing the
greatest common divisor have been studied for a couple of
decades. The integer case has been notoriously difficult, with
the need for “backup steps” in various forms. One central idea
is the “half-gcd” operation, hgcd. hgcd takes two n-bit
numbers as inputs, and outputs two numbers of size ≈ n/2
with the same gcd, together with a transformation matrix
with elements also of size ≈ n/2. This talk explains why
backup steps are necessary for algorithms based directly on the
quotient sequence, and proposes a robustness criterion that is
used to construct a simpler hgcd algorithm without any
backup steps.
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Background



History

I 300 BC (or even earlier): Euclid’s algorithm.

I 1938: Lehmer’s algorithm.

I 1961: Binary gcd described by Stein.

I 1994, 1995: Sorensson, Weber.

I 1970, 1971: Knuth and Schönhage, subquadratic computation
of continued fractions.

I ca 1987: Schönhage’s “controlled Euclidean descent”,
unpublished.

I 2004: Stéhle and Zimmermann, recursive binary gcd.

I 2005–2008: Möller. Left-to-right algorithm. Simpler and
slightly faster than earlier algorithms.



Comparison of gcd algorithms

Algorithm Time (ms) # lines

mpn gcd 1440 304 gmp-4.1.4 (Weber)
mpn rgcd 87 1967 “Classical” Schönhage gcd
mpn bgcd 93 1348 Rec. bin. (Stehlé/Zimmermann)
mpn sgcd 100 760 1987 alg. (Schönhage/Weilert)
mpn ngcd 85 733 New algorithm for gmp-5

I Benchmarked on 32-bit amd, with inputs of 48 000 digits.

I Cross-over around 7 700 digits.
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Questions

Q Where does the complexity come from?

A Accurate computation of the quotient sequence.

Q How to avoid that?

A Stop bothering about quotients.



What is hgcd?

Definition (Reduction)

(
A
B

)
= M

(
α
β

)
I Positive integers A, B, α, and β.

I Matrix M, non-negative integer elements.

I det M = 1.

Fact

For any reduction, gcd(A,B) = gcd(α, β)

Definition (hgcd, “half gcd”)

Input: A,B, of size n

Output: M, with size of α, β and M elements ≈ n/2
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Main idea of subquadratic hgcd

n p1

A
...

B
...︸ ︷︷ ︸

M1 ← hgcd(b2−p1Ac, b2−p1Bc)(
A
B

)
← M−1

1

(
A
B

)
≈ 3n/4 p2

A
...

B
...︸ ︷︷ ︸

M2 ← hgcd(b2−p2Ac, b2−p2Bc)
M ← M1 ·M2



Asymptotic running time

gcd(A,B)

1 while #(A,B) > gcd-threshold
2 do
3 n← #(A,B), p ← bn/2c
4 M ← hgcd(b2−pAc, b2−pBc)
5 (A;B)← M−1(A;B)
6 return gcd-base(A,B)

Running times for operations on n-bit numbers

Multiplication: M(n) = O(n log n log log n)
hgcd: H(n) = O(M(n) log n)
gcd: G (n) ≈ 2H(n)



Quotient based HGCD



Definition (Quotient sequence)

For any positive integers a, b, the quotient sequence qj and
remainder sequence rj are defined by

r0 = a r1 = b

qj = brj−1/rjc rj+1 = rj−1 − qj rj

Fact (
a
b

)
= M

(
rj

rj+1

)
with

M =

(
q1 1
1 0

) (
q2 1
1 0

)
· · ·

(
qj 1
1 0

)
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Theorem (Jebelean’s criterion)

Let a > b > 0, with remainders rj and rj+1, and(
a
b

)
=

(
u u′

v v ′

)
︸ ︷︷ ︸

=M

(
rj

rj+1

)

Let p > 0 be arbitrary, 0 ≤ A′,B ′ < 2p, and define(
A
B

)
= 2p

(
a
b

)
+

(
A′

B ′

)
(

Rj

Rj+1

)
= 2p

(
rj

rj+1

)
+ M−1

(
A′

B ′

)
For even j, the following two statements are equivalent:

(i) rj+1 ≥ v and rj − rj+1 ≥ u + u′

(ii) For any p and any A′,B ′, the jth remainders of A and B are
Rj and Rj+1. The quotient sequences are the same.



Theorem (Jebelean’s simplified criterion)

Let a > b > 0, with remainders rj , rj+1 and rj+2, and(
a
b

)
= M

(
rj

rj+1

)
Assume that #rj+2 > dn/2e, with n = #a. Let p > 0 be arbitrary,
0 ≤ A′,B ′ < 2p, and define(

A
B

)
= 2p

(
a
b

)
+

(
A′

B ′

)
(

Rj

Rj+1

)
= 2p

(
rj

rj+1

)
+ M−1

(
A′

B ′

)
Then the jth remainders of A and B are Rj and Rj+1. The
quotient sequences are the same.



Quotient based hgcd

A generalization of Lehmer’s algorithm

Define hgcd(a, b) to return an M satisfying Jebelean’s criterion.

Example (Recursive computation)

(a; b) = (858 824; 528 747)

M1 = (13, 8; 8, 5) No difficulties

(c ; d) = M−1
1 (a; b) = 16 (4009; 194) + (0; 15)

M2 = hgcd(4009, 194) = (21, 20; 1, 1)

M−1
2 (4009; 194) = (129; 65) Satisfies Jebelean

M = M1 ·M2 = (281, 268; 173, 165)

M−1(a; b) = (1764; 1355)



Backup step

Example (Continued)

(a; b) = (858 824; 528 747)

M = M1 ·M2 = (281, 268; 173, 165)

M−1(a; b) = (1764; 1355) Violates Jebelean

M corresponds to quotients 1, 1, 1, 1, 1, 1, 20, 1.
E.g., (A;B) = 8 (a; b) + (1; 7) has quotient sequence starting with
1, 1, 1, 1, 1, 1, 20, 2.

Conclusion

I The quotients are correct for (a; b), but not robust enough.

I Must drop final quotient before returning hgcd(a, b).
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Robust HGCD



A robustness condition

Definition (Robust reduction)

A reduction M of (A;B) is robust iff

M−1

{(
A
B

)
+

(
x
y

)}
> 0

for all “small” (x ; y). More precisely, for all (x ; y) ∈ S , where

S = {(x ; y) ∈ R2, |x | < 2, |y | < 2, |x − y | < 2}

Theorem

The reduction (
A
B

)
=

(
u u′

v v ′

)
︸ ︷︷ ︸

=M

(
α
β

)

is robust iff α ≥ 2 max(u′, v ′) and β ≥ 2 max(u, v)
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hgcd based on robustness

hgcd(A,B)

1 n← #(A,B)
2 p1 ← bn/2c
3 M1 ← hgcd(b2−p1Ac, b2−p1Bc)
4 (C ;D)← M−1

1 (A;B) � #|C − D| ≈ 3n/4
5 One subtraction and one division step on (C ;D). Update M1.
6 p2 ← #M1 + 2
7 M2 ← hgcd(b2−p2Cc, b2−p2Dc)
8 return M1 ·M2

c = b2−p2Cc c̃ = 2−p2C − c

M−1

{(
A
B

)
+

(
x
y

)}
= 2p2M−1

2

{ (
c
d

)
+

(
c̃

d̃

)
+ 2−p2M−1

1

(
x
y

)
︸ ︷︷ ︸

disturbance ∈S

}
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Strong robustness

Definition (Strong robustess)

Let n = #(A,B) denote the bitsize of the larger of A and B. If
# min(α, β) > bn/2c+ 1, then M is strongly robust.

Lemma

If a reduction M is strongly robust, then it is robust.

Theorem (Schönhage-Weilert reduction)

For arbitrary A,B > 0, let n = #(A,B) and s = bn/2c+ 1.
Assume #min(A,B) > s. There exists a unique strongly robust M
such that # min(α, β) > s and #|α− β| ≤ s.
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hgcd with strong robustness

hgcd(A,B)

1 n← #(A,B)
2 s ← bn/2c+ 1
3 Split: p1 ← bn/2c, A = 2p1a + A′, B = 2p1b + B ′

4 (α, β, M1)← hgcd(a, b)

5 (A;B)← 2p1(α;β) + M−1
1 (A′;B ′) � #|A− B| ≈ 3n/4

6 One subtraction and one division step on (A;B). Update M1.
7 Split: p2 ← 2s −#(A,B) + 1, A = 2p2a + A′, B = 2p2b + B ′

8 (α, β, M2)← hgcd(a, b)

9 (A;B)← 2p2(α;β) + M−1
2 (A′;B ′)

10 M ← M1 ·M2

11 while #|A− B| > s � At most four times
12 One division step on (A;B). Update M.
13 return (A,B,M)



Base case hgcd

I hgcd2: Special case hgcd with two-limb inputs, and an M
with single-limb elements.

I Repeat: extract top two limbs, call hgcd2, apply resulting M
to bignums.

I Essentially Lehmer’s algorithm, with a different stop condition.

I Quadratic running time.



Further work



Matrix multiplication

M1 ·M2 2× 2 matrices

Assume fft and sizes such that transforms and pointwise
multiplication take equal time.

fft ifft Pointwise Saving

Naive 16 8 8 0%
Schönhage-Strassen 14 7 7 12%
Invariance 8 4 8 37%
S.-S. + invariance 8 4 7 40%



Matrix-vector multiplication

I If α, β are returned: M of size n/4, A′,B ′ of size n/2.

M−1 ·
(

A
B

)
= 2p

(
α
β

)
+ M−1 ·

(
A′

B ′

)
#Mults. Prod. size

Naive 4 3n/4 Wins in fft range
Block 8 n/2 Can use invariance
S.-S. 7 n/2 Wins in Karatsuba range

I If only matrix is returned: M of size n/4, A,B of size n.(
α
β

)
= M−1 ·

(
A
B

)
α, β are of size 3n/4 (cancellation!). Compute mod(2k ± 1),
with transform size ≈ 3n/4.

I Same transform size, 3n/4, no matter if reduced numbers are
available or not!
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Base case optimizations

I Optimizing hgcd2 attacks the linear term in the running
time.

I The quadratic term is the computation

M−1

(
a
b

)
=

(
v ′a− u′b
−va + ub

)
Using mpn mul 1 and mpn submul 1 uses four loops. Try
writing a single loop to compute v ′a− u′b.

I Or try writing a loop that computes two products v ′a and va.

I The matrix elements have high bit clear. May simplify sign or
carry handling.

I If we have efficient mpn mul 2 and mpn submul 2, implement
hgcd4, as two calls to hgcd2. Then apply an M with
two-limb elements to the bignums.



Recursive binary GCD



Binary (2-adic) division

Notation

v(x) denotes the number of trailing zeros: 2−v(x) x is an odd
integer.

Assume that v(a) < v(b). Put

a′ = 2−v(a)a b′ = 2−v(b)b k = v(b)− v(a)

Define a quotient

q = −a′(b′)−1 (mod 2k+1)

and represent it as an integer in the symmetric interval |q| < 2k .
Define the remainder

r = a + 2−kqb

Then

v(r) > v(b) |r | < |a|+ |b| gcd(b, r) = 2k gcd(a, b)



Binary quotient sequence

Definition (Binary quotient sequence)

For odd a and even b, define a binary quotient and remainder
sequence by

r0 = a r1 = b

qj = bdiv(rj−1, rj) rj+1 = rj−1 + 2v(rj−1)−v(rj )qj rj

Theorem

The sequence terminates with rj = 0 for some finite j.

Proof.

Assume as rj 6= 0. Then since 2j divides rj , we have

2j ≤ |rj | ≤ max(|a|, |b|) Fj+1



Binary hgcd

Definition (bhgcd)

Input: Size n, odd A, even B, with |A|, |B| < 2n.

Output: Matrix M, integer v , odd a, even b, such that(
a
b

)
= 2−v

(
rj

rj+1

)
= 2−2vM

(
A
B

)
and v = v(rj) < b(n − 1)/2c ≤ v(rj+1)

Fact

gcd(a, b) = gcd(A,B)



Binary recursive algorithm

bhgcd(A,B, n)

1 k ← b(n − 1)/2c
2 if v(B) ≥ k return 0,A,B, I
3 Split: n1 = k + 1, A = 2n1A′ + a, B = 2n1B ′ + b
4 (j1, α, β,M)← bhgcd(a, b, n1)
5 (A;B)← (α, β) + 2n1−2j1M(A′;B ′)
6 v1 ← v(B)
7 if j1 + v1 ≥ k return j1,A,B,M
8 q ← bdiv(A,B)
9 (A,B)← 2−v1(B,A + 2−v1qB)

10 M ← (0, 2v1 ; 2v1 , q) ·M
11 if j1 + v1 + v(B) ≥ k return j1,A,B,M
12 Split: n2 ← 2(k − j1 − v1) + 1, A = 2n2A′ + a, B = 2n2B ′ + b
13 (j2, α, β,M ′)← bhgcd(a, b, n2)
14 (A;B)← (α, β) + 2n2−2j2M ′(A′;B ′)
15 M ← M ′ ·M
16 return j1 + v1 + j2,A,B,M
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