Abstract

Subquadratic divide-and-conquer algorithms for computing the
greatest common divisor have been studied for a couple of
decades. The integer case has been notoriously difficult, with
the need for “backup steps” in various forms. One central idea
is the “half-gcd” operation, HGCD. HGCD takes two n-bit
numbers as inputs, and outputs two numbers of size &~ n/2
with the same GCD, together with a transformation matrix
with elements also of size =~ n/2. This talk explains why
backup steps are necessary for algorithms based directly on the
quotient sequence, and proposes a robustness criterion that is
used to construct a simpler HGCD algorithm without any
backup steps.

Subquadratic GCD

Niels Moller

May 15, 2008

Outline

Background
Algorithm comparison
The half-gcd (HGCD) operation
Subquadratic HGCD

Quotient based HGCD
Jebelean's criterion
Why backup steps?

Robust HGCD
Simple subquadratic HGCD
Difference-based HGCD

Base case HGCD

Further work

Background

History

vV v . v. v .Y

300 BC (or even earlier): Euclid's algorithm.
1938: Lehmer's algorithm.

1961: Binary GCD described by Stein.

1994, 1995: Sorensson, Weber.

1970, 1971: Knuth and Schonhage, subquadratic computation
of continued fractions.

ca 1987: Schonhage's “controlled Euclidean descent”,
unpublished.

> 2004: Stéhle and Zimmermann, recursive binary GCD.
» 2005-2008: Moller. Left-to-right algorithm. Simpler and

slightly faster than earlier algorithms.

Comparison of GCD algorithms

Algorithm | Time (ms) # lines

mpn_gcd 1440 304 GMP-4.1.4 (Weber)
mpn_rgcd 87 1967 “Classical” Schonhage GcD
mpn_bgcd 93 1348 Rec. bin. (Stehlé/Zimmermann)
mpn_sgcd 100 760 1987 alg. (Schonhage/Weilert)
mpn_ngcd 85 733 New algorithm for GMP-5

Comparison of GCD algorithms

Algorithm | Time (ms) # lines

mpn_gcd 1440 304 GMP-4.1.4 (Weber)
mpn_rgcd 87 1967 “Classical” Schonhage GcD
mpn_bgcd 93 1348 Rec. bin. (Stehlé/Zimmermann)
mpn_sgcd 100 760 1987 alg. (Schonhage/Weilert)
mpn_ngcd 85 733 New algorithm for GMP-5

» Benchmarked on 32-bit AMD, with inputs of 48000 digits.
» Cross-over around 7700 digits.

Questions

Q Where does the complexity come from?

A Accurate computation of the quotient sequence.

Q How to avoid that?
A Stop bothering about quotients.

What is HGCD?
Definition (Reduction)

A «
(5) =+ ()
» Positive integers A, B, «, and (5.

» Matrix M, non-negative integer elements.
» detM = 1.

What is HGCD?
Definition (Reduction)

A «
(5) =+ ()
» Positive integers A, B, «, and (5.

» Matrix M, non-negative integer elements.
» detM = 1.

For any reduction, GCD(A, B) = ccD(a, [3)

What is HGCD?
Definition (Reduction)

A «
(5) =+ ()
» Positive integers A, B, «, and (5.

» Matrix M, non-negative integer elements.
» detM = 1.

For any reduction, GCD(A, B) = ccD(a, [3)

Definition (HGCD, “half ged”)

Input: A, B, of size n
Output: M, with size of o, # and M elements ~ n/2

Main idea of subquadratic HGCD

n P1

My — ucen([2- P A, |27 B))

(3)- 2

~ 3n/4

P2

/

M, — HGCD([27P2A|, [27P2B])

M — My - M,

Asymptotic running time

GCD(A, B)

1 while #(A, B) > GCD-THRESHOLD

2 do

3 n— #(A.B), p — |n/2]

4 M — HGeD(|27PA], [27PB])
5 (A; B) «— M~L(A; B)

6 return GCD-BASE(A, B)

Running times for operations on n-bit numbers

Multiplication: ~ M(n) = O(nlog nloglog n)
HGCD: H(n) = O(M(n) log n)
Gep: G(n) = 2H(n)

Quotient based HGCD

Definition (Quotient sequence)

For any positive integers a, b, the quotient sequence g; and
remainder sequence r; are defined by

rn=a rn==~nb

g = [rji-1/r] 41 = rji-1— qjfj

Definition (Quotient sequence)

For any positive integers a, b, the quotient sequence g; and
remainder sequence r; are defined by

rn=a rn==~nb

g = [rji-1/r] 41 = rji-1— qjfj

with

Theorem (Jebelean’s criterion)

Let a> b > 0, with remainders r; and ri1, and

0620

Let p > 0 be arbitrary, 0 < A", B’ < 2P, and define
A a A
_op
(5)-=()+(5)
Rj ri _ A’
=2°(Y)+M! ()
(F"Hl) (fj+1> B’
For even j, the following two statements are equivalent:
(i) ipa>vandrp—rign >u+u

(i) For any p and any A, B, the jth remainders of A and B are
R; and R;11. The quotient sequences are the same.

Theorem (Jebelean’s simplified criterion)

Let a> b > 0, with remainders rj, riy1 and ri;>, and

(5)=m(,%)

Assume that #rj1 2 > [n/2], with n = #a. Let p > 0 be arbitrary,
0 < A, B' < 2P, and define

(5)=2(5) (&)
() = () + 7 (5)

Then the jth remainders of A and B are R;j and Rj1. The
quotient sequences are the same.

Quotient based HGCD

A generalization of Lehmer's algorithm

Define HGCD(a, b) to return an M satisfying Jebelean’s criterion.

Example (Recursive computation)

(a; b) = (858 824; 528 747)
M; = (13,8;8,5) No difficulties
(c;d) = M Y(a; b) = 16 (4009; 194) + (0; 15)
M, = HGCD(4009, 194) = (21,20;1,1)
M, 1(4009; 194) = (129; 65) Satisfies Jebelean
M = My - My = (281,268; 173, 165)
M~1(a; b) = (1764; 1355)

Backup step

Example (Continued)

(a; b) = (858824;528 747)
M = M, - M, = (281,268;173,165)
M~1(a; b) = (1764; 1355) Violates Jebelean
M corresponds to quotients 1,1,1,1,1,1 20, 1.

E.g., (A;B) =8(a; b) + (1;7) has quotient sequence starting with
1,1,1,1,1,1,20, 2.

Backup step

Example (Continued)

(a; b) = (858824;528747)
M = My - My = (281,268; 173, 165)
M~1(a; b) = (1764; 1355) Violates Jebelean
M corresponds to quotients 1,1,1,1,1,1 20, 1.
E.g., (A; B) =8(a; b) + (1;7) has quotient sequence starting with
1,1,1,1,1,1,20,2.

Conclusion

» The quotients are correct for (a; b), but not robust enough.

» Must drop final quotient before returning HGCD(a, b).

Robust HGCD

A robustness condition
Definition (Robust reduction)
A reduction M of (A; B) is robust iff

{8)}

for all “small” (x;y). More precisely, for all (x;y) € S, where

S={(xy) eR?|x| <2,|y| <2, |x—y| <2}

A robustness condition
Definition (Robust reduction)
A reduction M of (A; B) is robust iff

{8)}

for all “small” (x;y). More precisely, for all (x;y) € S, where

S={(xy) eR?|x| <2,|y| <2, |x—y| <2}

The reduction

is robust iff « > 2max(v',v') and 3 > 2 max(u, v)

HGCD based on robustness

HGCD(A, B)

n«— #(A, B)

p1 < [n/2]

M; — HGCD([27P*A|, |27P1B))

(C; D) «— M;*(A; B) > #|C — D| ~3n/4
One subtraction and one division step on (C; D). Update M;.
p2 < #My + 2

M, — HGCD([27P2C|, |27P2D])

return My - M,

O NOOC1T B WN -

HGCD based on robustness

HGCD(A, B)

n«— #(A, B)

p1 — [n/2]

M; — HGCD([27P*A|, |27P1B))

(C; D) «— M;*(A; B) > #|C — D| ~3n/4
One subtraction and one division step on (C; D). Update M;.
p2 — #My + 2

M, — HGCD([27P2C|, |27P2D])

return My - M,

O NO OB WN

c=|2"P(C] c=2PC-c

w{(8)+ ()} =omm{ () (§) -2 ()

disturbance €S

Strong robustness

Definition (Strong robustess)

Let n = #(A, B) denote the bitsize of the larger of A and B. If
min(a, 8) > |n/2] + 1, then M is strongly robust.

Lemma

If a reduction M is strongly robust, then it is robust.

Strong robustness

Definition (Strong robustess)

Let n = #(A, B) denote the bitsize of the larger of A and B. If
min(a, 8) > |n/2] + 1, then M is strongly robust.

Lemma

If a reduction M is strongly robust, then it is robust.

Theorem (Schonhage-Weilert reduction)

For arbitrary A, B > 0, let n = #(A,B) and s = [n/2] + 1.
Assume #min(A, B) > s. There exists a unique strongly robust M
such that # min(c,) > s and #|a — (| < s.

HGCD with strong robustness

HGCD(A, B)
1 n— #(AB)
2 s |n/2]+1
3 Split: p1 — |n/2], A=2Pra+ A/, B=2Ph+ B’
4 (o, 3, M) — HGCD(a, b)
5 (A B) « 2P (a; B) + MY (A B') > #|A— B| ~ 3n/4
6 One subtraction and one division step on (A; B). Update M.
7 Split: po— 25— #(A,B) + 1, A=2Pa+ A, B=2Pb+ B
8 (a, 8, M) — HGCD(a, b)
9 (A B) < 27(a; B) + My Y(A; B')
10 M— M- M,
11 while #|/A—B| >s > At most four times
12 One division step on (A; B). Update M.
13 return (A, B, M)

Base case HGCD

» HGCD2: Special case HGCD with two-limb inputs, and an M
with single-limb elements.

» Repeat: extract top two limbs, call HGCD2, apply resulting M
to bignums.

» Essentially Lehmer’s algorithm, with a different stop condition.

» Quadratic running time.

Further work

Matrix multiplication

M; - My 2 x 2 matrices

Assume FFT and sizes such that transforms and pointwise
multiplication take equal time.

‘FFT IFFT Pointwise Saving

Naive 16 8 8 0%
Schonhage-Strassen | 14 7 7 12%
Invariance 8 4 8 37%
S.-S. + invariance 8 4 7 40%

Matrix-vector multiplication

> If o, 3 are returned: M of size n/4, A', B’ of size n/2.

o ()|

‘ #Mults. Prod. size

Jows (2)

Naive 4 3n/4
Block 8 n/2
S.-S. 7 n/2

Wins in FFT range
Can use invariance
Wins in Karatsuba range

Matrix-vector multiplication
> If o, 3 are returned: M of size n/4, A', B’ of size n/2.

e () ()i 2

‘ #Mults. Prod. size

Naive 4 3n/4 Wins in FFT range
Block 8 n/2 Can use invariance
S.-S. 7 n/2 Wins in Karatsuba range

» If only matrix is returned: M of size n/4, A, B of size n.

(-0

a, 3 are of size 3n/4 (cancellation!). Compute mod(2* & 1),
with transform size ~ 3n/4.

Matrix-vector multiplication
> If o, 3 are returned: M of size n/4, A', B’ of size n/2.

e ()= () 3

‘ #Mults. Prod. size

Naive 4 3n/4 Wins in FFT range
Block 8 n/2 Can use invariance
S.-S. 7 n/2 Wins in Karatsuba range

» If only matrix is returned: M of size n/4, A, B of size n.

(-0

a, 3 are of size 3n/4 (cancellation!). Compute mod (2% + 1),
with transform size ~ 3n/4.

» Same transform size, 3n/4, no matter if reduced numbers are
available or not!

Base case optimizations

» Optimizing HGCD2 attacks the linear term in the running
time.

» The quadratic term is the computation

v-1(2) — via—u'b
b —va—+ ub

Using mpn mul_1 and mpn_submul_1 uses four loops. Try
writing a single loop to compute v'a — u'b.

» Or try writing a loop that computes two products v/a and va.

» The matrix elements have high bit clear. May simplify sign or
carry handling.

» If we have efficient mpn_mul_2 and mpn_submul_2, implement
HGCD4, as two calls to HGCD2. Then apply an M with
two-limb elements to the bignums.

Recursive binary GCD

Binary (2-adic) division

v(x) denotes the number of trailing zeros: 2=¥) x is an odd
integer.

Assume that v(a) < v(b). Put
a =27, b =27V k = v(b) — v(a)
Define a quotient
g=-a(t)"" (mod 2¢1)

and represent it as an integer in the symmetric interval |g| < 2.
Define the remainder
r=a+2%gb

Then

v(r) > v(b) |r|<|a|+1|b] ccp(b,r)=2KccD(a, b)

Binary quotient sequence

Definition (Binary quotient sequence)

For odd a and even b, define a binary quotient and remainder
sequence by

rp=a n=~ab

qj = bdiv(rj_1,rj) g1 =rji—1+ 2V(’j—1)—V(’j)quj

Theorem

The sequence terminates with rj = 0 for some finite j.

Proof.

Assume as rj # 0. Then since 2/ divides r;, we have

2 < |y < max(|al, [b]) Fj11

Binary HGCD

Definition (BHGCD)

Input: Size n, odd A, even B, with |A|,|B| < 2".
Output: Matrix M, integer v, odd a, even b, such that

(0-+ ()0l

and v = v(5) < [(n— 1)/2] < v(5j11)

GCD(a, b) = ged(A, B)

Binary recursive algorithm

BHGCD(A, B, n)
1 k< |(n—1)/2]
2 if v(B) > k return 0, A, B, |
3 Split: i =k+1, A=2MmA 43, B=2"B'+b
4 (j,a,B, M)« BHGCD(a, b, n1)
5 (A;B) « (a,p) +2m~21M(A; B)
6 v v(B)
7 if j1+wvi > kreturn j1, A, B, M
8 g« bdiv(A, B)
9 (A,B)«—2"(B,A+2gB)
10 M« (0,21;21, q)-M
11 if 1 +wvi +v(B) > k return j;,A,B,M
12 Split: np «—2(k—j1—wv1)+1, A=2mA + a3, B=2mB'+b
13 (jo, 0, 3, M") «— BHGCD(a, b, n3)
14 (A;B) « (a,B) +2m=22M'(A'; B')
5 MM -M
16 return ji +vi + o, A, B, M

	Background
	Algorithm comparison
	The half-gcd (HGCD) operation
	Subquadratic hgcd

	Quotient based HGCD
	Jebelean's criterion
	Why backup steps?

	Robust HGCD
	Simple subquadratic hgcd
	Difference-based hgcd

	Base case hgcd
	Further work

